Animated interactive data
visualization using animint2 in R

1

Contents and motivation

This manual explains how to design and create interactive data visualizations using the R
package animint?2.

1.1 Contents

The chapters of this manual are organized as follows.

1.1.1 The animint2 extensions to the grammar of graphics

The first seven chapters should be read sequentially, since they give a step by step guide to
interactive data visualization using animint2.

This chapter gives an overview of data analysis and visualization. It provides motivation and
a theoretical foundation for the other chapters, and should be especially useful for readers
who are completely new to data analysis. It introduces the method of data visualization
prototyping using sketches, without introducing R code.

Starting with chapter 2, we will show how plot sketches can be translated into R code.
Chapter 2 explains the basics of plotting using ggplots and animint2, and should be most
useful for readers who have never used ggplot2. It explains how standard ggplots can be
rendered on web pages using animint2.

Chapter 3 introduces showSelected, one of the two main keywords that animint?2 introduces
for interactive data visualization design. Chapter 3 begins by explaining selection variables,
which provide the mechanism of interaction in animint2. Chapter 3 then explains how the
showSelected keyword makes it possible to plot data subsets. Chapter 3 also explains how
to use smooth transitions and animation.

Chapter 4 introduces clickSelects, the other main keyword that animint2 introduces for
interactive data visualization design. The clickSelects keyword makes it possible for the user
to change a selection variable by directly clicking on a plot element.

Chapter 5 explains several different ways to share your interactive data visualizations on the
web.

Chapter 6 covers some other features of animint2, including how to specify hyperlinks,
tooltips, data-driven selector variable names.

Chapter 7 covers the limitations of the current implementation of the animint2 R pack-
age, and explains workarounds for some common issues. It also includes some ideas for
improvements, for those who would like to contribute to animint2.

Ch02/Ch02-ggplot2.html
Ch03/Ch03-showSelected.html
Ch04/Ch04-clickSelects.html
Ch05/Ch05-sharing.html
Ch06/Ch06-other.html
Ch07/Ch07-limitations.html

4 Contents and motivation

1.1.2 Examples

The remaining chapters can be read in any order, since each chapter explains how to make
data visualizations for a particular data set.

Chapter 8 explains how to create a multi-panel interactive World Bank data visualization.
Chapter 9 shows a visualization of data from cyclists in Montreal.

Chapter 10 explains how to create an interactive re-design of the nearest neighbors data
visualization from the Elements of Statistical Learning book by Hastie et al.

Chapter 11 shows a data visualization that explains the Lasso, a machine learning model for
regularized regression.

Chapter 12 shows a data visualization that explains support vector machines (SVM), a
machine learning model for binary classification.

Chapter 13 explains how to create an interactive visualization that explains the Poisson
regression model.

Chapter 14 shows an example of how to create data-driven selectors using named clickSe-
lects/showSelects in an interactive visualization of a peak detection model.

Chapter 15 explains how to create an interactive visualization of the Newton root-finding
algorithm.

Chapter 16 explains how to create an interactive visualization of an optimal changepoint
detection model.

Chapter 17 explains how to create an interactive visualization of the k-means clustering
algorithm.

Chapter 18 explains how to create an interactive visualization of the gradient descent
algorithm for learning neural network weight matrices.

1.1.3 Appendices

Useful idioms contains detailed explanations of several R code idioms that are used throughout
this manual.

The contributing guide contains instructions about how you can contribute improvments to
this manual.

1.2 Motivation

The purpose of this manual is to explain the usage of animint2, an R package for interactive
data visualization. This introductory chapter answers the following questions:

e« What are data, and how are they analyzed?
o What is data visualization, and when is it useful for data analysis?
o What is interactive data visualization, and when is it useful?

This introductory chapter uses the following outline:

o What is data?

Ch08/Ch08-WorldBank-facets.html
Ch09/Ch09-Montreal-bikes.html
Ch10/Ch10-nearest-neighbors.html
Ch11/Ch11-lasso.html
Ch12/Ch12-SVM.html
Ch13/Ch13-poisson-regression.html
Ch14/Ch14-PeakSegJoint.html
Ch15/Ch15-Newton.html
Ch16/Ch16-change-point.html
Ch17/Ch17-k-means-clustering.html
Ch18/Ch18-neural-networks.html
Ch99/Ch99-appendix.html
contribute.html

Motivation 5

e Small data — data visualization is not necessary.
e Medium data — static data visualization is sufficient.
e Large data — interactive data visualization is useful.

1.2.1 What is data analysis?

Data are any pieces of information that are systematically recorded, either on paper or on a
computer. Anybody can create data, just by systematically writing things down. Typically,
data are created in order to help answer a specific question, and are organized into tables
with rows for observations and columns for variables or different types of information. The
word “data” is the plural form of “datum,” which we use to refer to one observation/row of
a data table. We use the term “data set” to refer to a subset of observations/rows, or the
entire data table.

There are many examples of data that could be created to answer questions based on
everyday experiences:

e How does the weather this year compare to previous years? Have we had more or less
rain than usual? To answer these questions, we could create a data table with column for
measurements of different weather conditions: temperature, rainfall, etc. There should
also be columns for the date and time of each observation, and a row for each observation.

e How is this new diet affecting me? If you are trying a new diet, you may want to record
what you eat and how you feel after each meal. In that case you could make a table with
a row for each meal and four columns: date, time, what you ate, and how you felt after.

e Does this new lung cancer treatment work better than the old treatment? A doctor who
conducts the clinical trial would randomly assign patients to receive either the new or
old treatment. The doctor would then create a data table with a row for each patient,
and several columns: years the patient has smoked, treatment type (new or old), patient
age at treatment, patient age at death.

We define “data analysis” as the process of answering these questions by converting the raw
data table into other, more comprehensible forms. One highly effective class of methods for
data analysis is called “data visualization,” which seeks to provide answers to questions by
converting a data set into an informative picture. The term “data visualization” refers to
both the picture itself (also known as a plot, chart, figure, graph, graphic, or data viz), and
the process of creating the picture.

There are many different ways to perform data analysis, and data sets of different sizes
should be analyzed using different techniques. There are many different ways to characterize
the size of data sets, and every author uses a slightly different definition. In this manual we
will use a classification of data sets into three sizes: small, medium, and large. We begin by
discussing small data sets, for which data visualization is not necessary.

1.2.2 Small data analysis without visualization

In this section, we will discuss “small data,” which are small enough such that data analysis
can be done by simply looking at the entire data table. For small data sets, there is no need
to use data visualization. Instead, the data can simply be presented for visual inspection in
a table.

As a concrete example, consider the famous tea tasting experiment proposed by Ronald
Fisher. A Lady claimed that she could taste the difference when milk is added to the teacup
before or after the tea. Fisher asked the question, can the Lady really taste the difference

https://en.wikipedia.org/wiki/Lady_tasting_tea
https://en.wikipedia.org/wiki/Lady_tasting_tea

6 Contents and motivation

between the two types of tea?

To answer that question, Fisher prepared four cups of tea with milk added after, and four
cups of tea with milk added before. Fisher then placed the cups in a random order, had
the Lady taste all eight cups of tea, and asked her to identify the four in which milk was
added after the tea. According to help(fisher.test) in R, the Lady correctly identified
three of the four cups in which milk was added after the tea. Fisher than wrote down the
following data: the total number of cups (8), the total number of cups with milk added (4),
and the total number of cups that the Lady correctly identified (3). In R, this data set can
be viewed by printing a contingency table of count data:

Truth
Guess Milk Tea
Milk 3 1
Tea 1 3

In this case, the data set is small enough such that Fisher’s question can be answered by
simply looking at the data table itself. If the Lady had been able to correctly identify all four
cups, then that would have been a very convincing demonstration of her ability. However,
she was apparently only able to correctly identify three out of the four cups, which is less
convincing.

The main topic of this manual is data visualization, which is not necessary for such small
data sets. Instead, we will focus on data sets that are too big to be analyzed by manual
visual inspection of the data table.

1.2.3 Medium data analysis with static data visualizations

For medium sized data sets, simply inspecting the data table is no longer sufficient to answer
the questions posed during data analysis. Medium data are big enough such that we need to
use visualization to understand the data.

For example, consider the following data on atmospheric carbon dioxide (CO2) concentrations,
recorded monthly between 1959 and 1997.

year.int month.int month year.month.POSIXct ppm

1: 1959 1 January 1959-01-15 315.42
: 1959 2 February 1959-02-15 316.31
467: 1997 11 November 1997-11-15 362.49
468: 1997 12 December 1997-12-15 364.34

Printing these data on the R command line shows that there are 468 rows/observations total.
This is not a huge number of observations, but it is already big enough so that answering
questions is not easy by simple visual inspection of the data table. Instead, we will create a
static data visualization:

Motivation 7

i WN‘M
E i il

S 340- May
o

i
@ MWV\/WWW\NW

1960 1970 1980 1990
year.month.POSIXct

® October

The static data visualization shows that CO2 concentrations increased over the second
half of the twentieth century. This particular data visualization is called a Keeling Curve.
It is named after Charles David Keeling, the pioneering scientist who collected the first
frequent regular data on atmospheric CO2. The general increasing trend can be explained
by considering the chemical process of combustion, which converts oxygen to CO2. Keeling
noted that “the observed rate of increase is nearly that to be expected from the combustion
of fossil fuel” (REF: The Concentration and Isotopic Abundances of Carbon Dioxide in the
Atmosphere, Keeling 1960).

The data visualization also reveals the interesting seasonal trend that attains a local maximum
each May and a local minimum each October. This seasonal trend can be explained by
considering the forests in the Northern Hemisphere. The leaves on the trees in these forests
perform photosynthesis, the chemical conversion of CO2 to oxygen. During the winter
months there are no leaves on the trees, so CO2 accumulates in the atmosphere until it peaks
in May of each year. When the leaves come back each year, they perform photosynthesis
throughout Spring and Summer, which causes the atmospheric CO2 concentration to drop
until it reaches its yearly minimum in October.

We say that this data visualization is “static” or “non-interactive” because the reader can
view it but can not change what is displayed. That is fine for medium sized data sets, in
which we can see all the details of the data set. However, as we discuss in the following
section, static data visualization is not sufficient to show all the details in larger data sets.

1.2.4 Large data analysis with interactive data visualization

Some data sets are so large that it is not possible or desirable to plot all of the data at once
in a static data visualization. For such “large data” sets, traditional approaches to data
analysis include summarizing the data, and then visualizing the summary. However, the
summary can be misleading, because it does not show all the details of the original data. In
such situations, “interactive data visualization” becomes useful.

https://en.wikipedia.org/wiki/Keeling_Curve

8 Contents and motivation

First, let us consider a slightly more complicated form of the Keeling Curve data visualization.

1 o
h : °
350- / °

340- ‘ .

330-

Atmospheric carbon dioxide (parts per million)

320- s 3 A

1960 1970 1980 1990
Time of measurement

360- | month

January
February
March
April

May

June

July
August
September
October
November

December

The plot above shows colored points for each month of the year, rather than for only May
and September, the yearly local minima that we wanted to emphasize. Since it lacks this
emphasis, this static plot is not as informative as the previous plot. This is an example
where it is not desirable to plot all of the data at once. We can solve this problem using the

following interactive plot.

Chapter summary and exercises 9

=

=

= 360 -

E month

]

=

u

= 350+ N

=

m L]

= .

£ 340

= * May

=

(=] .

£

= 3304 .

= N)

= g

—E_. L L

w 320

= October

E

= ;
1

1960 1970 1980 1990

Time of measurement

In the plot above, the default emphasis is May and October, but the user can click the
legend to update the emphasis. This simple example illustrates the main idea of interactive
data visualization using animint. There are many choices that must be made to show details
of big data sets. For example, the choice of which months to emphasize in the plot above.
Rather than fixing such choices in a static plot, the goal of interactive data visualization
is to allow the reader to see what the plot looks like when different choices are made. In
the example above, we used an interactive legend which allows the user to select different
months and see what the plot looks like after changing the selection.

The example above also provides a good example of clickSelects and showSelected,
the two keywords that animint introduces to allow interaction. Without going into too
many details, the plot above uses clickSelects=month for the interactive legend, mean-
ing that clicking the legend should change the selected months. Furthermore, we used
showSelected=month for the points, meaning that we should only plot the set of points
which corresponds to the currently selected months. In Chapters 3-4, we will explain how to
design data visualizations by writing R code using these two new keywords.

1.3 Chapter summary and exercises

This chapter explained some basic facts about data, and gave definitions of different sizes of
data: small, medium, and large.

10 Contents and motivation

¢ Based on the definitions introduced in this chapter, what is the difference between small
and medium data?
e What is the difference between medium and large data?

Next, Chapter 2 explains how the grammar of graphics can be used to create data visualiza-
tions.

Ch02/Ch02-ggplot2.html

Part 1

animint2 basics

2

Grammar of graphics

This chapter explains the grammar of graphics, which is a powerful model for describing a
large class of data visualizations. After reading this chapter, you will be able to

o State the advantages of the grammar of graphics relative to previous plotting systems
Install the animint2 R package

o Translate plot sketches into ggplot code in R

Render ggplots on web pages using animint?2

Create multi-layer ggplots

¢ Create multi-panel ggplots

L]

2.1 History and purpose of the grammar of graphics

Most computer systems for data analysis provide functions for creating plots to visualize
patterns in data. The oldest systems provide very general functions for drawing basic plot
components such as lines and points (e.g. the graphics and grid packages in R). If you
use one of these general systems, then it is your job to put the components together to
form a meaningful, interpretable plot. The advantage of general systems is that they impose
few limitations on what kinds of plots can be created. The disadvantage is that general
systems typically do not provide functions for automating common plotting tasks (axes,
panels, legends).

To overcome the disadvantages of these general plotting systems, charting packages such
as lattice were developed (Sarkar, 2008). Such packages have several pre-defined chart
types, and provide a dedicated function for creating each chart type. For example, lattice
provides the bwplot function for making box and whisker plots. The advantage of such
systems is that they provide a column name specification interface that simplifies creation of
entire plots, including legends and panels. Crucially, this column name specification interface
allows for rapid experimentation with different plot designs (for example, exchanging the
variables used for legends and panels). The disadvantage is the set of pre-defined chart types,
which means that it is not easy to create more complex graphics (with several layers of
geoms super-imposed on top of each other, each with its own data).

Newer plotting systems based on the grammar of graphics are situated between these two
extremes. Wilkinson proposed the grammar of graphics in order to describe and create a
large class of plots (Wilkinson, 2005). Wickham later implemented several ideas from the
grammar of graphics in the ggplot2 R package (Wickham, 2009). The ggplot2 package
has several advantages with respect to previous plotting systems.

o Like general plotting systems, and unlike lattice, ggplot2 imposes few limitations on
the types of plots that can be created (there are no pre-defined chart types). So it is

13

http://lmdvr.r-forge.r-project.org/figures/figures.html
http://www.springer.com/us/book/9780387245447?wt_mc=GoogleBooks.GoogleBooks.3.EN&token=gbgen#otherversion=9780387286952
https://www.amazon.com/dp/0387981403/ref=cm_sw_su_dp?tag=ggplot2-20

14 Grammar of graphics

possible to create complex graphics, with different layers plotted on top of each other,
each with its own data.

o Unlike general plotting systems, and like lattice, ggplot2 simplifies creation of legends
and panels via a column name specification interface (and so makes it easy to rapidly
experiment with using different variables in different plot designs).

e Since ggplot?2 is based on the grammar of graphics, an explicit mapping of data variables
to visual properties is required. Later in this chapter, we will explain how this mapping
allows sketches of plot ideas to be directly translated into R code.

Finally, all of the previously discussed plotting systems are intended for creating static
graphics, which can be viewed equally well on a computer screen or on paper. However, the
main topic of this manual is animint2, an R package for interactive graphics. In contrast
to static graphics, interactive graphics are best viewed on a computer with a mouse and
keyboard that can be used to interact with the plot.

Since many concepts from static graphics are also useful in interactive graphics, the animint?2
package is implemented as an extension/fork of ggplot2. In this chapter we will introduce
the main features of ggplot2 which will also be useful for interactive plot design in later
chapters.

In 2013, we created the animint package, which depends on the ggplot2 package. However
during 2014-2017, the ggplot2 package introduced many changes that were incompatible
with the interactive grammar of animint. Therefore in 2018 we created the animint2 package
which copies/forks the relevant parts of the ggplot2 package. Now animint2 can be used
without having ggplot2 installed. In fact, it is recommended to use library(animint?2)
without attaching ggplot2. However it is fine to use animint2 along with packages that
import/load ggplot2. For an example, see Chapter 16, which uses the penaltyLearning
package (which imports ggplot?2).

2.2 Installing and attaching animint2

To install the most recent release of animint2 from CRAN,
if (!requireNamespace("animint2"))install.packages("animint2")

Loading required namespace: animint2

To install an even more recent development version of animint2 from GitHub,
if (!requireNamespace("animint2")){
if (!requireNamespace("remotes"))install.packages("remotes")

remotes::install_github("tdhock/animint2")
}

Once you have installed animint2, you can load and attach all of its exported functions via:

library(animint?2)

../Ch16/Ch16-change-point.html

Translating plot sketches into ggplots 15

2.3 Translating plot sketches into ggplots

This section explains how to translate a plot sketch into R code. We use a data set from the
World Bank as an example. We begin by loading it and examining its column names.

data(WorldBank, package="animint2")

names (WorldBank)
[1] "iso2c" "country"
[3] "year" "fertility.rate"
[5] "life.expectancy" "population"
[7] "GDP.per.capita.Current.USD" "15.to0.25.yr.female.literacy"
[9] "iso3c" "region"
[11] "capital" "longitude"
[13] "latitude" "income"

[15] "lending"

We see 15 column names above. The WorldBank data set consist of measures such as fertility
rate and life expectancy for each country over the period 1960-2010. To simplify the output
below, we compute an abbreviated Region column, and consider only the subset of data
which are relevant for the data visualizations below.

WorldBank$Region <- sub(

" (all income levels)", "", WorldBank$region, fixed=TRUE)
world_bank <- subset(
WorldBank,

is.finite(fertility.rate) & is.finite(life.expectancy),
select=c(Region,country,year,fertility.rate,life.expectancy))
tail (world_bank)

Region country year fertility.rate life.expectancy

13032 Sub-Saharan Africa Zimbabwe 2006 3.5561 44.70178
13033 Sub-Saharan Africa Zimbabwe 2007 3.491 45.79707
13034 Sub-Saharan Africa Zimbabwe 2008 3.428 47.07061
13035 Sub-Saharan Africa Zimbabwe 2009 3.360 48.45049
13036 Sub-Saharan Africa Zimbabwe 2010 3.290 49.86088
13037 Sub-Saharan Africa Zimbabwe 2011 3.219 51.23644

dim(world_bank)

[1] 9852 5

The code above prints the last few rows, and the dimension of the data table (9852 rows
and 5 columns).

Suppose that we are interested to see if there is any relationship between life expectancy
and fertility rate. We could fix one year, then use those two data variables in a scatterplot.
Consider the figure below which sketches the main components of that data visualization.

16 Grammar of graphics

Region Life expectancy

Fertility rate
Region
1975

Fertility rate

Life expectancy

Figure 2.1: Sketch of scatter plot based on World Bank data

The sketch above shows life expectancy on the horizontal (x) axis, fertility rate on the
vertical (y) axis, and a legend for the region. These elements of the sketch can be directly
translated into R code using the following method. First, we need to construct a data
table that has one row for every country in 1975, and columns named life.expectancy,
fertility.rate, and region. The world_bank data already has these columns, so all we
need to do is consider the subset for the year 1975:

world_bank_1975 <- subset(world_bank, year==1975)
tail (world_bank_1975)

Region country year fertility.rate
11623 East Asia & Pacific Vanuatu 1975 5.929
11676 East Asia & Pacific Samoa 1975 5.237
12524 Middle East & North Africa Yemen, Rep. 1975 8.089
12683 Sub-Saharan Africa South Africa 1975 5.261
12895 Sub-Saharan Africa Zambia 1975 7.435
13001 Sub-Saharan Africa Zimbabwe 1975 7.395
life.expectancy
11623 55.47998
11676 57.46951
12524 43.40459
12683 54.57920
12895 51.04137
13001 56.71702

The code above prints the data for 1975, which clearly has the appropriate columns, and
one row for each country. The next step is to use the notes in the sketch to code a ggplot
with a corresponding aes or aesthetic mapping of data variables to visual properties:

scatter <- ggplot()+
geom_point(
mapping=aes(x=1ife.expectancy, y=fertility.rate, color=Region),
data=world_bank_1975)
scatter

Rendering ggplots on web pages using animint

8.
[]
° 0%
[)
[] []
[]
{]
° &
°) C
6- ° e °
. A . o % N
S ° °
= °
% o o '’ o ° o.
4- °
A []
o'.
[]
[N 1
{]
y.
2
..
40 50 60 70

life.expectancy

17

Region
East Asia & Pacific
Europe & Central Asia
® Latin America & Caribbean
® Middle East & North Africa
® North America
South Asia

Sub-Saharan Africa

The aes function is called with names for visual properties (x, y, color) and values for the
corresponding data variables (1ife.expectancy, fertility.rate, region). This mapping
is applied to the variables in the world_bank_1975 data table, in order to create the
visual properties of the geom_point. The ggplot was saved as the scatter object, which
when printed on the R command line shows the plot on a graphics device. Note that we

automatically have a region color legend.

2.4 Rendering ggplots on web pages using animint

This section explains how the animint2 package can be used to render ggplots on web pages.
The ggplot from the previous section can be rendered with animint2, by using the animint

function.

animint (scatter)

18 Grammar of graphics

8 _ []
L]
] .
y
] . ™
] - &
6 . [.
] . @ " -

o . . * . Region
= . . East Asia & Pacific
= . .
= «ts s Europe & Central Asia
= -
o - 4T et * Latin America & Caribbean
— |

4 i * Middle East & North Africa

L
et + North America
L South Asia
J"_ & Sub-Saharan Africa
2 o
T T T T 1
40 20 60 70

life.expectancy

If, when you run the code above, the animint does not render in your web browser for some
reason (for example if you see a blank web page), then please consult our wiki FAQ which
will help you find a solution. Internally, the animint function creates a list of class animint,
and then R runs the print.animint function via the S3 object system. The animint2
package implements a compiler that takes the list as input, and outputs a web page with a
data visualization. The compiler is the animint2dir function, which compiles the animint
scatter.viz list to a directory of data and code files that can be rendered in a web browser.
It is activated automatically by the print.animint function.

When viewed in a web browser, the animint plot should look mostly the same as static
versions produced by standard R graphics devices. One difference is that the region legend
is interactive: clicking a legend entry will hide or show the points of that color.

Exercise: try changing the aes mapping of the ggplot, and then making a new animint.
Quantitative variables like population are best shown using the x/y axes or point size.
Qualitative variables like lending are best shown using point color or £il1l.

2.5 Multi-layer data visualization (multiple geoms)

Multi-layer data visualization is useful when you want to display several different geoms
or data sets in the same plot. For example, consider the following sketch which adds a
geom_path to the previous data visualization.

https://github.com/tdhock/animint2/wiki/FAQ#web-browser-on-local-indexhtml-file-is-blank
http://adv-r.had.co.nz/OO-essentials.html#s3

Multi-layer data visualization (multiple geoms) 19

Region S i wo= country
% /y/o . 9 Life expectancy ajvo ¢=
5 \\\ v‘& Fertility rate Awta =1970-75
= o \ov = Region 'OO\‘A -
9 > C\? -~ = 1975

Life expectancy

Figure 2.2: Sketch of multi-layer visualization using World Bank data

Note how the sketch above includes two different geoms (point and path). The two geoms
share a common definition of the x, y, and color aesthetics, but have different data sets.

Below we translate this sketch into R code.

world_bank_before_1975 <- subset(world_bank, 1970 <= year & year <= 1975)
two.layers <- scatter+
geom_path(aes(
x=life.expectancy,
y=fertility.rate,
color=Region,
group=country),
data=world_bank_before_1975)
(viz.two.layers <- animint(two.layers))

=]
1

Region

+= East Asia & Pacific
+= Europe & Central Asia

—+— Latin America & Caribbean

fertility.rate

47 ~e— Middle East & North Africa
+= North America
+— South Asia

5 +— Sub-Saharan Africa

40 50 60 70
life.expectancy

Note that we save the return value of the animint function to the viz.two.layers object

20 Grammar of graphics

(which is also printed due to the parentheses). In this manual we will often use variable
names that start with viz to denote animint data visualization objects, which are in fact
lists of ggplots and options.

The plot above shows a data visualization with 2 geoms/layers:

e the geom_point shows the life expectancy, fertility rate, and region of all countries in
1975.
e the geom_path shows the same variables for the previous 5 years.

The addition of the geom_path shows how the countries changed over time. In particular, it
shows that most countries moved to the right and down, meaning higher life expectancy and
lower fertility rate. However, there are some exceptions. For example, the two East Asian
countries in the bottom left suffered a decrease in life expectancy over this period. And
there are some countries which showed an increased fertility rate.

Exercise: try changing the region legend to an income legend. Hint: you need to use
the same aes(color=income) specification for all geoms, and you will need to use the
original WorldBank data with all columns (not world_bank which has a limited number
of columns). You may want to use scale_color_manual with a sequential color palette,
see RColorBrewer: :display.brewer.all(type="seq") and read the appendix for more
details.

Can we add the names of the countries to the data viz? Below, we add another layer with a
text label for each country’s name.

three.layers <- two.layers+
geom_text (aes(

x=life.expectancy,
y=fertility.rate,
color=Region,
label=country),
data=world_bank_1975)

animint (three.layers)

Multi-plot data visualization 21

8
o 67 Region
= +— East Asia & Pacific
'.‘_2:-’ +— Europe & Central Asia
-E +— Latin America & Caribbean
=4 +— Middle East & North Africa
+— Morth America
+— Sputh Asia
+— Sub-Saharan Africa
2
T T T T 1

40 50 60 70
life.expectancy

This data viz is not so easy to read, since there are so many overlapping text labels. The
interactive region legend helps a little, by allowing the user to hide data from selected
regions. However, it would be even better if the user could show and hide the text for
individual countries. That type of interaction can be achieved using the showSelected and
clickSelects parameters, which we explain in Chapters 3-4.

Exercise: Re-make this data visualization using aes(tooltip), which is a new fea-
ture in animint2 (not present in ggplot2), and is discussed in Chapter 5. Set
aes(tooltip=country) so that the country name will be visible when you hover the
cursor over the corresponding geom.

Next, we move on to discuss a major strength of animint: data visualization with multiple
linked plots.

2.6 Multi-plot data visualization

Multi-plot data visualization is useful when you want to show some related data sets using
more than one aesthetic mapping. In interactive data visualization, one plot is often used to
display a summary, and another plot is used to display details. For example, consider a data
visualization with two plots: a time series with World Bank data from 1960-2010 (summary),
and a scatterplot with data from 1975 (details). We sketch the time series plot below.

22 Grammar of graphics

Region
year
GJ o
© Fertility rate
> Region
B country
&
1960-2010 (all)

year

Figure 2.3: Sketch of visualization with two plots based on World Bank data

Note how the sketch above can be directly translated into the R code below. We copy the
existing viz list (viz.two.layers) to a new list (viz.two.plots), then we assign a ggplot

to a new element named timeSeries.

viz.two.plots <- viz.two.layers
viz.two.plots$timeSeries <- ggplot()+
geom_line (aes(

x=year,

y=fertility.rate,

color=Region,

group=country) ,

data=world_bank)

That results in a named list of two elements (both elements are ggplots with class gganimint).

summary (viz.two.plots)

Length Class Mode
plotil 9 gganimint list
timeSeries 9 gganimint list

This data visualization list can be printed /rendered by typing its name. Since the list contains
two ggplots, animint2 renders the data viz as two linked plots.

viz.two.plots

Multi-panel data visualization (facets) 23

»
8 S
., 1
L
#{k% 7.54
6 g
P ~, a5 Region @ Region
= \ +~ East Asia & Pacific = East Asia & Pacific
E ~ +~ Europe & Central Asia g‘ 5.0+ Europe & Central Asia
£ + Latin America & Caribbean £ Latin America & Caribbean
< 4 &
+ Middle East & North Africa Middle East & North Africa
= North America North America
= South Asia 2.54 South Asia
=~ Sub-Saharan Africa Sub-Saharan Africa
24
T T T T 1 T T T T y 1
40 50 60 70 1960 1970 1980 1990 2000 2010
life.expectancy year

The data visualization above contains two ggplots, which each map different data variables
to the horizontal x axis. The time series uses aes (x=year), and shows a summary of fertility
rate values over all years. The scatterplot uses aes(x=1ife.expectancy), and shows details
of the relationship between fertility rate and life expectancy during 1975.

Try clicking a legend entry in either the scatterplot or the time series above. You should
see the data and legends in both plots update simultaneously. Since aes(color=Region)
was specified in both plots, animint creates a single shared selector variable called Region.
Clicking either legend has the effect of updating the set of selected regions, and so animint
updates the legends and data in both plots accordingly. This is the main mechanism that
animint uses to create interactive data visualizations with linked plots, and will be discussed
in more detail in the next two chapters.

Exercise: use animint to create a data viz with three plots, by creating a list with
three ggplots. For example, you could add a time series of another data variable such
as life.expectancy or population.

Note that both ggplots map the fertility rate variable to the y axis. However, since they are
separate plots, the ranges of their y axes are computed separately. That means that even
when the two plots are rendered side-by-side, the two y axis are not exactly aligned. That
is a problem since it would make it easier to decode the data visualization if each unit of
vertical space was used to show the same amount of fertility rate. To achieve that effect, we
use facets in the next section.

2.7 Multi-panel data visualization (facets)

Panels or facets are sub-plots that show related data visualizations. One of the main strengths
of ggplots is that different kinds of multi-panel plots are relatively easy to create. Multi-panel
data visualization is useful for two different purposes:

¢ You want to align the axes of several related plots containing different geoms. This
facilitates comparison between several different geoms, and is a technique that is also
useful for interactive data visualization.

¢ You want to divide the data from one geom into several panels. This facilitates comparison
between data subsets, and is less useful for interactive data visualization (interactivity
can often be used instead, to achieve the same effect of comparing data subsets).

24 Grammar of graphics

2.7.1 Different geoms in each panel (aligned axes)

We begin by explaining the how facets are useful to align the axes of related plots. Consider
the sketch below which contains a plot with two panels.

Region

%’ Fertility rate
>
£ Region
kL .~ X.var

Life expectancy year

year
Life expectancy 1960-2010 (all)
1970-75

1975

Figure 2.4: Sketch of multi-panel visualization of World Bank data using different geoms in

each panel (aligned axes)

Note that the two panels plot different geoms using a panel-specific aesthetic mapping. The
point and path in the left panel have x=1ife.expectancy, and the line in the right panel
has x=year. Also note that we specified facet=x.var, so we need to add a variable called
x.var to each of the three data sets. We translate this sketch to the R code below.

add.x.var <- function(df, x.var){
data.frame(df, x.var=factor(x.var, c("life expectancy", "year")))
}
(viz.aligned <- animint(
scatter=ggplot O+
theme _bw()+
theme_animint (width=600)+
theme (panel .margin=grid::unit(0, "lines"))+
geom_point (aes/(
x=1ife.expectancy, y=fertility.rate, color=Region),
data=add.x.var(world_bank_1975, "life expectancy"))+
geom_path(aes(
x=1ife.expectancy, y=fertility.rate, color=Region,
group=country),
data=add.x.var(world_bank_before_1975, "life expectancy"))+

geom_line (aes(

Multi-panel data visualization (facets) 25

x=year, y=fertility.rate, color=Region, group=country),
data=add.x.var(world_bank, "year"))+

Xlab(llll)+
facet_grid(. ~ x.var, scales="free")))
life expectancy

Region
*= East Asia & Pacific
*~ Europe & Central Asia
=*= Latin America & Caribbean

—*= Middle East & North Africa

fertility.rate

*= North America
*= South Asia
*= Sub-Saharan Africa

40 50 60 70 1960 1970 1980 1990 2000 2010

The data visualization above contains a single ggplot with two panels and three layers. The
left panel shows the geom_point and geom_path, and the right panel shows the geom_line.
The panels have a shared axis for fertility rate, which ensures that the lines in the time
series panel can be directly compared with the points and paths in the scatterplot panel.

Note that we used the add.x.var function to add a x.var variable to each data set, and
then we used that variable in facet_grid(scales="free"). We call this the addColumn
then facet idiom, which is generally useful for creating a multi-panel data visualization
with aligned axes. In particular, if we wanted to change the order of the panels in the data
visualization, we would only need to edit the order of the factor levels in the definition of
add.x.var.

Also note that theme_bw means to use black panel borders and white panel backgrounds,
and panel.margin=0 means to use no space between panels. Eliminating the space between
panels means that more space will be used for the panels, which serves to emphasize the
data. We call this the Space saving facets idiom, which is generally useful in any ggplot with
facets.

2.7.2 Same geoms in each panel (compare data subsets)

The second reason for using plots with multiple panels in a data visualization is to compare
subsets of observations. This facilitates comparison between data subsets, and can be used
in at least two different situations:

¢ One geom’s data set has too many observations to display informatively in one panel.
¢ You want to compare different subsets of data that is plotted for one geom.

For example, consider the sketch below.

26 Grammar of graphics

Region Life expectancy 3 years
% S Fertility rate
.4%‘ /4 ’ Region 15 years
5 : .~ show.year
&

Life expectancy

Figure 2.5: Sketch of multi-panel visualization with same geoms in each panel, to compare
World Bank data in different years

Note that the three panels plot the same two geoms (point and path). Since facet=show.year,
and there are three panels shown, we will need to create data tables which have three values
for the show.year variable. The geom_point has data for just 3 years, and the geom_path
has data for 15 years (but 3 values of show.year). The code below creates these two data
sets for three years of the world_bank data set.

show.point.list <- list()
show.path.list <- list()
for(show.year in c(1975, 1985, 1995)){
show.point.list[[paste(show.year)]] <- data.frame(
show.year, subset(world_bank, year==show.year))
show.path.list[[paste(show.year)]] <- data.frame(
show.year, subset(
world_bank, show.year - 5 <= year & year <= show.year))
}
show.point <- do.call(rbind, show.point.list)
show.path <- do.call(rbind, show.path.list)

We used a for loop over three values of show.year, the variable which we will use later in
facet_grid. For each value of show.year, we store a data subset as a named element of
a list. After the for loop, we use do.call with rbind to combine the data subsets. This is
an example of the list of data tables idiom, which is generally useful for interactive data
visualization.

Below, we facet on the show.year variable to create a data visualization with three panels.

animint (
scatter=ggplot)+

geom_point (aes(
x=life.expectancy, y=fertility.rate, color=Region),
data=show.point)+

geom_path (aes(
x=life.expectancy, y=fertility.rate, color=Region,
group=country),
data=show.path)+

Chapter summary and exercises 27

facet_grid(. ~ show.year)+
theme_bw()+
theme_animint (width=600))

1975

Region
*= East Asia & Pacific
*= Europe & Central Asia

*= Latin America & Caribbean

fertility.rate
[4al
b
w \ 4 S
N6

+= Middle East & North Africa
*= North America
* South Asia

- L]
25 *= Sub-Saharan Africa

40 60 80 40 60 80 40 60 80

life.expectancy

The data visualization above contains a single ggplot with three panels. It shows more of
the world_bank data set than the previous visualizations which showed only the data from
1975. However, it still only shows a relatively small data subset. You may be tempted to try
using a panel to display every year (not just 1975, 1985, and 1995). However, beware that
this type of multi-panel data visualization is especially useful if there are only a few data
subsets. With more than about 10 panels, it becomes difficult to see all the data at once,
and thus difficult to make meaningful comparisons.

Instead of showing all of the data at once, we can instead create an animated data visualization
that shows the viewer different data subsets over time. In the next chapter, we will show
how the new showSelected keyword can be used to achieve animation, and reveal more
details of this data set.

2.8 Chapter summary and exercises

This chapter presented the basics of static data visualization using ggplot2. We showed how
animint can be used to render a list of ggplots in a web browser. We explained two features
of ggplot2 that make it ideal for data visualization: multi-layer and multi-panel graphics.

Exercises:

e« What are the three main advantages of ggplot?2 relative to previous plotting systems
such as grid and lattice?

o What is the purpose of multi-layer graphics?

o Create a version of viz.two.layers with aes(tooltip) computed based on the
min/max values of the data shown by the geom_path. Hint: for each country in
world_bank_before_1975, compute a text string to use for aes(tooltip). One way to

../Ch03/Ch03-showSelected.html

28 Grammar of graphics

do this is via data.table(world_bank_before_1975) [, .(tooltip=sprintf(...)),
by=country].

o What are the two different reasons for creating multi-panel graphics? Which of these
two types is more useful with interactivity?

e Let us define “A < B” to mean that “one B can contain several A.” Which of the following
statements is true?

— ggplot < panel
— panel < ggplot
— ggplot < animint
— animint < ggplot
— layer < panel

— panel < layer

— layer < ggplot

— ggplot < layer

e In the viz.aligned facets, why is it important to use the scales="free" argument?

e Inviz.aligned we showed a ggplot with a scatterplot panel on the left and a time series
panel on the right. Make another version of the data visualization with the time series
panel on the left and the scatterplot panel on the right.

e In viz.aligned the scatterplot displays fertility rate and life expectancy, but the time
series displays only fertility rate. Make another version of the data visualization that
shows both time series. Hint: use both horizontal and vertical panels in facet_grid.

o Use aes(size=population) in the scatterplot to show the population of each country.
Hint: scale_size_animint(pixel.range=c(5, 10) means that circles with a radius of
5/10 pixels should be used represent the minimum/maximum population.

o Create a multi-panel data visualization that shows each year of the world_bank data set
in a separate panel. What are the limitations of using static graphics to visualize these
data?

e Create viz.aligned using a plotting system that is not based on the grammar of
graphics. For example, you can use functions from the graphics package in R (plot,
points, lines, etc), or matplotlib in Python. What are some advantages of ggplot?2
and animint?

Next, Chapter 3 explains the showSelected keyword, which indicates a variable to use for
subsetting the data before plotting.

../Ch03/Ch03-showSelected.html

3
The showSelected keyword

This chapter explains showSelected, one of the two main keywords that animint introduces
for interactive data visualization. After reading this chapter, you will be able to

o Use the showSelected keyword in your plot sketches to specify geoms for which only a
subset of data should be plotted at any time.

o Use selection menus in animint to change the subset of plotted data.

e Specify smooth transitions between data subsets using the duration option and key
aesthetic.

e Create animated data visualizations using the time option.

3.1 Sketching with showSelected

In this section, we will explain how the showSelected keyword can be used in plot sketches. The
showSelected keyword specifies a variable to use for subsetting the data before plotting. Each
geom in a data visualization has its own data set, and its own definition of showSelected
variables. That means different geoms can specify different data sets and showSelected
keywords to show different data subsets.

In fact, we have already used the showSelected keyword, which was automatically created by
the interactive legends that we created in the previous two chapters. For example, consider
the sketch below of the Keeling Curve data visualization from Chapter 1.

Figure 3.1: CO2 data viz

The sketch above includes showSelected=month for the geom_point, meaning that it should
show the subset of data for the selected months. In contrast, since the geom_line does
not include showSelected keywords, it always shows the entire data set (regardless of the
selected months).

As another example, consider the sketch below of the first WorldBank data visualization
from Chapter 2.

29

30 The showSelected keyword

Figure 3.2: WorldBank data viz with showSelected

The sketch above specifies showSelected=region for the geom_point, meaning that it
should show the subset of data for the selected regions.

Note that the code we used in chapter 2 did not explicitly specify showSelected=region.
Instead, we specified aes(color=region), and animint automatically assigned a showSe-
lected keyword. In general, animint will assign a showSelected keyword for each variable
that is used in a categorical legend.

However, the showSelected keyword is not limited to use with categorical legends. You
can use showSelected keywords for any data variables you like, by explicitly specifying the
variable names in the showSelected argument of the geom.

Each variable that is used with showSelected is treated by animint as a selection variable.
For example, the Keeling Curve data viz has one selection variable (month), and so does
the WorldBank data viz (region). For each selection variable, animint keeps track of the
currently selected values. When the selection changes, animint updates the subset of data
that is shown.

Each of the data visualizations sketched above has only one selection variable. However, a
data visualization can have any number of selection variables. In the next section, we will
explore a visualization of the World Bank data that has selection variables for region and
year.

3.2 Selecting data subsets using menus

Consider the following sketch which adds a showSelected variable, and changes the data
set.

Region
Life expectancy

Fertility rate
Region

Fertility rate

year, Region

Life expectancy 1960-2010 (all)

Figure 3.3: WorldBank data viz with showSelected

Selecting data subsets using menus 31

Note that there are two showSelected variables, region and year. Also note that the data
is specified as all years (but only one will be shown at a time due to showSelected=year).
Below, we translate this sketch into R code.

library(animint2)

data(WorldBank)

scatter <- ggplot()+

geom_point (aes(

x=life.expectancy, y=fertility.rate, color=region),
showSelected="year",
data=WorldBank)

scatter

Warning: Removed 1490 rows containing missing values (geom_point).

region
© East Asia & Pacific (all income levels)
® Europe & Central Asia (all income levels)
® Latin America & Caribbean (all income levels)
© Middle East & North Africa (all income levels)

® North America

fertility.rate

© South Asia

© Sub-Saharan Africa (all income levels)

40 60 80
life.expectancy

Note that the ggplot above contains the showSelected argument, one of the two main
features introduced in animint2. The showSelected keyword is ignored when rendering the
plot using the usual R graphics devices, which produce a scatterplot with one point for every
country and year. Note that since color=region was specified, animint also automatically
uses region as a showSelected variable.

In constrast, rendering the same ggplot using animint yields the interactive data visualization
below.

animint (scatter)

32 The showSelected keyword

-
7.5 o o'
. .. :. . ® L)
" T - .,. - .
SR
° b 5o a region
— L
o “ ¥ East Asia & Pacific (all income levels)
'.'_? 5.04 - X Europe & Central Asia (all income levels)
— L
E "_- * Latin America & Caribbean (all income levels)
[¥t
.3 + Middle East & North Africa (all income levels)
. * MNorth America
.
2.5 South Asia
Sub-Saharan Africa (all income levels)
T T T 1
40 60 80

life.expectancy

Note that the data viz above has two selection variables: region and year. Each variable has
a menu at the bottom of the data viz that can be used to change the current selection. In
this data viz, these selection menus are shown by default. They can be hidden by clicking
the “Hide selection menus” button, and shown again by clicking the “Show selection menus”
button.

Discrete legend variables such as region default to multiple selection, so several values are
selected and shown at once. Try changing the selected region in the interactive legend and
the selection menu. When you change the selection using either method, both the interactive
legend and the selection menu should update to reflect the current selection.

We use the terms “direct manipulation” and “indirect manipulation” to describe these
different ways of changing the selection. Direct manipulation typically involves clicking on
the objects that you want to change, and is usually easier to understand. In contrast, indirect
manipulation techniques such as menus are typically more complicated to understand. In
the animint above, you can change the value of the region variable using either the legend
or the menu. Using the legend is a more direct manipulation technique, since the legend is
drawn closer to the plotted data points that will be updated.

Other selection variables such as year default to single selection, so only one value is selected
and shown at any time. Try changing the selected value of the year variable using the
selection menu. You should see the points in the scatterplot immediately update to show
the fertility rate and life expectancy of all the countries in the year that you selected.

Multi-layer exercise: Add another geom to this interactive scatterplot. As in Chapter 2,
you can use a geom_text to show the name of each country (easy), or a geom_text to show
the selected year (medium), or a geom_path to show the previous 5 years of data (hard).
Hint: make sure to specify showSelected=year for all geoms.

Multi-plot exercise: Add a time series plot to the data viz above. As in Chapter 2, you can
use a geom_line to show the fertility rate for each country over all years. Add a geom_vline
with showSelected=year to highlight the currently selected year.

Transitions: the duration option and key aesthetic 33

3.3 Transitions: the duration option and key aesthetic

You may have noticed that there are buttons at the bottom of each data visualization created
by animint. Try clicking the “Show animation controls” button above. This table contains a
row for each selection variable. The text boxes show the number of milliseconds that are
used for transition durations after updating each selection variable. The default transition
duration for each selection variable is 0, meaning data will be immediately placed at their
new positions after updating each variable.

To illustrate the significance of transition durations, try changing the transition duration of
the year variable to 2000. Then, change the selected value of the year variable. You should
see the data points move slowly to their new positions, over a duration of 2 seconds.

Some transitions result in points moving only a little bit, to nearby positions (e.g. 1979-1980).
Other transitions result in points moving a lot more, to far away locations (e.g. 1980-1981).
Why is that?

Smooth transitions only make sense for data points that exist both before and after changing
the selection. In the R code below we compute a table of counts of data points that can be
plotted in each of these three years.

three.years <- subset(WorldBank, 1979 <= year & year <= 1981)
can.plot <- with(three.years, {
(lis.na(life.expectancy)) & (!is.na(fertility.rate))

B
table(three.years$year, can.plot)

can.plot

FALSE TRUE
1979 27 187
1980 27 187
1981 26 188

It is clear from the table above that there are 187 points that can be plotted in 1979 and
1980. However, in 1981 there is one more data point, corresponding to a country for which
we did not have data in 1980. Below we show the data for that country, Kosovo.

subset (three.years, country=="Kosovo")

iso2c country year fertility.rate life.expectancy population

5850 KV Kosovo 1979 NA NA 1491000
5851 KV Kosovo 1980 NA NA 1521000
5852 KV Kosovo 1981 4.5758 65.93268 1552000

GDP.per.capita.Current.USD 15.to0.25.yr.female.literacy iso3c
5850 NA NA KSV
5851 NA NA KSV
5852 NA NA KSV

region capital longitude latitude
5850 Europe & Central Asia (all income levels) Pristina 20.926 42.565
5851 Europe & Central Asia (all income levels) Pristina 20.926 42.565

34

5852 Europe & Central Asia (all income levels) Pristina

5850 Lower middle
5851 Lower middle
5852 Lower middle

income lending

income IDA
income IDA
income IDA

The showSelected keyword

20.926 42.565

Indeed, the table above shows that fertility rate and life expectancy are missing for Kosovo
during 1979-1980. Thus it does not make sense to do a smooth transition for countries such
as Kosovo which would not be plotted either before or after the transition. How to specify
that in the data visualization? In the code below, we use aes(key=country) to specify that
the country variable should be used to match data points before and after changing the
selection.

scatter.key <- ggplot()+
geom_point (aes(
x=life.expectancy, y=fertility.rate, color=region,
key=country),
showSelected="year",
data=WorldBank)

The key aesthetic in the ggplot above is only meaningful for interactive data visualization,
so it ignored when rendering with the usual R graphics devices. However, if we render this
ggplot using animint?2, the country variable will be used to make sure transtion durations
are meaningful. To specify a default transition duration for the year variable, we use the
duration option in the data viz below.

(viz.duration <- animint(scatter.key, duration=1list(year=2000)))

- N .
7.5 s -; . : . .
Wpt I3 “:. .
° “ LA region
E “ o . East Asia & Pacific (all income levels)
E 5.0 ‘ : X * Europe & Central Asia (all income levels)
= " . *
E *s . * Latin America & Caribbean (all income levels)
Br= F
= * Middle East & North Africa (all income levels)
: at g * * North America
e
2.5 2 -‘;:_'_-- South Asia
e Sub-Saharan Africa (all income levels)
T T T 1
40 60 80

life.expectancy

The duration option must be a named list. Each name should be a selection variable, and
each value should specify the number of milliseconds to use for a transition duration when
the selected value of that variable is changed.

Animation: the time option 35

If you click “Show animation controls” in the data viz above, you will see that the text box
for the year variable is 2000, as specified in the R code. If you change the selection from
1980 to 1981, you should see a proper transition.

In general the key aesthetic should be specified for all geoms that use showSelected with a
variable that appears in the duration option. In this example, we used the duration option
to specify a smooth transition for the year variable. Since we use showSelected=year in
the geom_point, we also specified the key aesthetic for this geom.

3.4 Animation: the time option

The time option is used to specify a variable to use for animation. The code below specifies
year as the variable to animate over time, with an update every 2000 milliseconds.

viz.duration.time <- viz.duration
viz.duration.time$time <- list(variable="year", ms=2000)
viz.duration.time

L -
7.5 ol :' . -: N =
s - -
™3 * .:. -‘.. .
” . -, region
= . ? - East Asia & Pacific (all income levels)
E 5.0 : = * Europe & Central Asia (all income levels)
E ¢ o * Latin America & Caribbean (all income levels)
bt - -
s * Middle East & North Africa (all income levels)
*e o * * North America
* P
2.5 T South Asia
: 3L
bl Sub-Saharan Africa (all income levels)
T T T 1
40 60 80

life.expectancy

The data visualization above is animated, because the selected year advances every two
seconds.

Exercise: make an animated data visualization that does NOT use smooth transitions.
Hint: make a list of ggplots that has the time option but no duration option.

36 The showSelected keyword

3.5 Chapter summary and exercises

This chapter explained the showSelected keyword, selection menus, transition durations,
and animation.

Exercises:

o Make an improved version of viz.aligned from the previous chapter. Instead of fixing
the year at 1975, use showSelected=year so that the user can select a year. Add geoms
that show the selected year: a geom_text on the scatterplot, and a geom_vline on the
time series.

e Translate one of the animation package examples to an animint. Hint: in the code for the
animation package there is always a for loop over the time variable. Instead of calling a
plotting function inside the for loop, use the list of data tables idiom to store the data
that should be plotted. Then use those data along with showSelected to create ggplots,
and render them using animint.

Next, Chapter 4 explains the clickSelects keyword, which indicates a geom that can be
clicked to update a selection variable.

https://yihui.name/animation/examples/
../Ch04/Ch04-clickSelects.html

4

The clickSelects keyword

This chapter explains clickSelects, one of the two main keywords that animint introduces for
interactive data visualization. The clickSelects keyword specifies a geom for which clicking
updates a selection variable. Each geom in a data visualization has its own data set, and
its own definition of the clickSelects keyword. So clicking on different geoms can change
different selection variables.

After reading this chapter, you will be able to

e Understand how interactive legends implicitly use clickSelects.

o Use the clickSelects keyword in your plot sketches.

o Translate your plot sketches with clickSelects into R code.

o Use the selector.types option to specify multiple selection variables.

4.1 Interactive legends implicitly use clickSelects

In this section, we will explain how the clickSelects keyword is implicitly used in interactive
legends. If you have read the previous chapters, you have already implicitly used clickSelects,
which was automatically created for the interactive legends in the previous chapters. For
example, consider the sketch of the World Bank data viz from the last chapter.

Figure 4.1: legend clickSelects

Since the legend has clickSelects=region, clicking an entry of that legend updates the
region selection variable. Note that animint automatically makes every discrete legend
interactive, so you do not need to explicitly specify clickSelects=region for the legend.
In fact, when we specified color=region for the geom_point, animint2 does two things
automatically:

o showSelected=region is assigned to the same geom_point.
e clickSelects=region is assigned to the color legend.

Note that clickSelects keywords are not limited to interactive legends. Each geom has
its own clickSelects variable, which determines which selection variable is updated after

37

38 The clickSelects keyword

clicking that geom. In the next section we will give several examples of how clickSelects
can be used in combination with showSelected to create interactive data visualizations.

4.2 Use clickSelects to identify points on a scatterplot

The goal of this section is to create the following visualization of the World Bank data.

Figure 4.2: World Bank viz text

To start, consider the following R code which generates a scatterplot of the World Bank
data:

library(animint2)

data(WorldBank)

scatter <- ggplot()+

geom_point (aes(

x=life.expectancy, y=fertility.rate, color=region,
key=country),
showSelected="year",
clickSelects="country",
data=WorldBank)

scatter

Warning: Removed 1490 rows containing missing values (geom_point).

Use clickSelects to identify points on a scatterplot 39

region
© East Asia & Pacific (all income levels)
© Europe & Central Asia (all income levels)
©® Latin America & Caribbean (all income levels)

© Middle East & North Africa (all income levels)

fertility.rate

©® North America
© South Asia

® Sub-Saharan Africa (all income levels)

40 60 80
life.expectancy

Note that the plot above is not interactive, because it is rendered using the traditional
R graphics device. In contrast, rendering the same ggplot using animint2 results in the
following interactive plot:

(viz.scatter <- animint(
scatter=scatter,
duration=1list (year=2000)))

" o cetyye 5.t
PRl Pl
. _ : o region
Ej A * East Asia & Pacific (all income levels)
E 5.0 : X * Europe & Central Asia (all income levels)
E e . * Latin America & Caribbean (all income levels)
- 3 * Middle East & North Africa (all income levels)
. ® * North America
25 - ':- + South Asia
. * Sub-Saharan Africa (all income levels)
T T T 1
40 60 80
life.expectancy

Try clicking data points in the scatterplot above. You should see the value of the country

40

The clickSelects keyword

selection menu change after clicking a data point. You should also see that the data point for
the selected country is darker than the others. This serves to highlight the current selection,
and is performed automatically for each geom with clickSelects. By default the selected
point has alpha=1 (fully opaque, no transparency), and the other points have alpha=0.5
(semi-transparent). These defaults can be customized; for example in the code below a black

outline is used to highlight the current selection.

animint (
ggplot O+
geom_point (aes(

x=life.expectancy, y=fertility.rate, fill=region,

key=country),

shape=21,
color="black",
color_off=NA,
showSelected="year",
clickSelects="country",
data=WorldBank))

7.5- -

%]

E o

£ 5.0 .

E L]
2.5- .

40 60 80

life.expectancy

region

East Asia & Pacific (all income levels)

Europe & Central Asia (all income levels)
Latin America & Caribbean (all income levels)
Middle East & North Africa (all income levels)
North America

South Asia

Sub-Saharan Africa (all income levels)

The data visualization above shows the currently selected country name in the selection
menu, but it would be better to show it as a text label on the scatterplot. We can do that
by adding a geom_text layer with two showSelected variables:

viz.text <- viz.scatter
viz.text$scatter <- scatter+
geom_text (aes(

x=life.expectancy, y=fertility.rate, label=country,

key=country),
showSelected=c("year", "country"),
data=WorldBank)

Use clickSelects to identify points on a scatterplot 41

viz.text

7.5
o region
g East Asia & Pacific (all income levels)
E 5.0 Europe & Central Asia (all income levels)
% * Latin America & Caribbean (all income levels)
= + Middle East & Naorth Africa (all income levels)

* North America
2.5 South Asia
Sub-Saharan Africa (all income levels)
T T T 1

40 60 80

life.expectancy

After clicking a data point in the scatterplot above, you should see a text label with the
country name appear. Furthermore, try changing the year using the selection menu. You
should see the text label move in a smooth transition along with the corresponding data
point.

The data visualization above contains more than one geom, each with different interactive
features. Try clicking the “Start Tour” button at the bottom of the data visualization, which
will show what interactive features are available for the first geom in the data visualization.
Clicking Next will show information for the next geom, and clicking Done or the grey
background will end the Tour. The “Start Tour” feature can be useful for new users of
your data visualization to discover what interactive features are present in each geom. The
information displayed during the tour can be customized, by specifying the help and title
params of each geom.

As explained in the last chapter, any variable specified using the showSelected argument
of a geom is treated as an interactive variable. In the example above, we specified two
showSelected variables for the geom_text. This means to only draw a text label for the
rows of the WorldBank data set that match the current values of both selection variables.
Since each combination of country and year has one row in these data, only one text label
will be shown at a time.

Try clicking the legend entry that corresponds to the region for the currently selected
country (e.g. if Canada is selected, try clicking the North America legend entry). You should
see the point disappear, but the text stay displayed.

Exercise: how can you get the text to disappear along with the point? Hint: you need to
add a keyword to the geom_text.

In the last chapter, we introduced the terms “direct manipulation” and “indirect manip-
ulation” to describe interactions with legends and menus. In the data viz above, we can
change the value of the country selection variable by either clicking a data point (direct

42 The clickSelects keyword

manipulation) or using the selection menu (indirect manipulation). Both techniques are
useful, but for different purposes:

e Direct manipulation by clicking data points is useful to find the names of countries
with extreme values of fertility rate and life expectancy. For example, for the year 1960,
clicking the point at the bottom left of the plot reveals the country name Gabon.

¢ Indirect manipulation using menus is useful to see the plotted position of a country of
interest. For example, it would be difficult to find France by clicking all the different
points, but it is simple to find France by typing its name in the selection menu.

Note that when the data viz above is first rendered, the selected country is Andorra and the
selected year is 1960. Since the data for Andorra is missing in 1960, there is no text label
drawn at first. To change the first selection, you can specify the first option, as explained
in the next section.

4.3 The first option

To specify the selection that should be shown when the data viz is first rendered, use the
first option. It should be a named list with entries for each selection variable. For example,
the code below specifies 1970 as the first year, United States as the first country, and North
America and South Asia as the first regions.

viz.first <- viz.text
viz.first$first <- list(

year=1970,

country="United States",

region=c("North America", "South Asia"))
viz.first

7.5
. region
E 4
=
= 5.0+
= . tin America & (
&
. st & N
* MNorth America
2.5 United States South Asia

Suhb-5

40 60 80

life.expectancy

The selector.types option 43

Note that in the data viz above, there is only one country selected at a time. In the next
section, we will explain how the selector.types option can be used to change country to
a multiple selection variable.

4.4 The selector.types option

In this section our goal is to produce a slightly more complicated version of the scatterplot
in the last section. The sketch below has only one difference with respect to the sketch from
the last section: text labels are shown for more than one country.

Figure 4.3: World Bank viz text

In animint, each selection variable has a type, either single or multiple. Single selection
means that only one value can be selected at a time. Multiple selection means that any
number of values can be selected at a time. In the plots in the last section, multiple selection
was used for the region variable but not for the year and country variables. Why is that?

By default, animint assigns multiple selection to all variables that appear in interactive
discrete legends, and single selection to other variables. However, single or multiple selection
can be specified by using the selector.types option. In the R code below, we use the
selector.types option to specify that country should be treated as a multiple selection
variable.

viz.multiple <- viz.first
viz.multiple$selector.types <- list(country="multiple")
viz.multiple

44 The clickSelects keyword

7.5+
. region
E .
£ 5.0
= .
X
L]
* MNorth America
2.5 United States South Asia

40 60 80

life.expectancy

When the data viz above is first rendered, it shows data points from the year 1970, for each
country in North America and South Asia. It also shows a text label for the United States.

You may have noticed that it is easy to add countries to the current selection, by clicking
data points. Normally, clicking a selected data point will remove that country from the
current selection. However, in this particular data viz, it is not so easy to remove them, since
the text labels are rendered on top of the data points.

Exercise: Re-make the data viz above so that clicking a text label removes that country
from the selection set. Hint: you need to add a clickSelects keyword to the geom_text.

Note that in the data viz above, the year variable can only be changed via the selection
menu.

In the next section, we will add a facet with a geom that can be directly clicked to change
the year variable.

4.5 Selecting a year on a time series plot

The goal of this section is to add a time series plot that can be clicked to change the selected
year.

Figure 4.4: World Bank time series

Selecting a year on a time series plot 45

Note that the sketch above includes geom_tallrect, a new geom introduced in animint. It is
“tall” because it occupies the entire vertical space of the plot, and thus only requires definition
of its horizontal limits via the xmin and xmax aesthetics. Specifying clickSelects=year
means that we want to be able to draw one tallrect for each year, and click a tallrect to
change the selected year. Thus we need to create a new data set called years with one row
for each unique year of the WorldBank data.

years <- data.frame(year=unique(WorldBank$year))
head (years)

year
1960
1961
1962
1963
1964
1965

O WN -

Next, we add the time series ggplot to the existing data viz.

viz.timeSeries <- viz.multiple
viz.timeSeries$timeSeries <- ggplot()+
geom_tallrect (aes(
xmin=year-0.5, xmax=year+0.5),
clickSelects="year",
alpha=0.5,
data=years)+
geom_line (aes(
x=year, y=fertility.rate, group=country, color=region),
clickSelects="country",
size=3,
alpha=0.6,
data=WorldBank)
viz.timeSeries

7.54 7.54

region region

fertility.rate
o
o
T
fertility.rate
o
)

ddle East & v 3
* North America North America
254 United States South Asia 25 South Asia

life.expectancy year
Try clicking the background of the time series in the data viz above. You should see the
data points and text labels move in a smooth transition to their places at the newly selected
year.

Animation exercise: make the data viz animated by specifying the time option, as
explained in Chapter 3.

46 The clickSelects keyword

Multi-layer exercise: add a geom_text that shows the current year on the scatterplot.
Add a geom_path that shows data for the previous 5 years.

4.6 Selecting a year on a time series facet

The goal of this section is to add a facet with a time series plot that can be clicked to change
the selected year.

Figure 4.5: World Bank scatter facet

First, we re-create the scatterplot from the previous section using the addColumn then facet
idiom, which is useful for creating ggplots with aligned axes.

add.x.var <- function(df, x.var){
data.frame(df, x.var=factor(x.var, c("life expectancy", "year")))
}
scatterFacet <- ggplot()+
geom_point (aes(
x=life.expectancy, y=fertility.rate, color=region,
key=country),
showSelected="year",
clickSelects="country",
data=add.x.var(WorldBank, "life expectancy"))+
geom_text (aes(
x=life.expectancy, y=fertility.rate, label=country,
key=country),
clickSelects="country",
showSelected=c("year", "country", "region"),
data=add.x.var(WorldBank, "life expectancy"))+
facet_grid(. ~ x.var, scales="free")+
xlab("")+

Selecting a year on a time series facet 47

theme bw()+
theme (panel .margin=grid: :unit(0, "lines"))
scatterFacet

Warning: Removed 1490 rows containing missing values (geom_point).

Warning: Removed 1490 rows containing missing values (geom_text).

life expectancy

7.5
region
East Asia & Pacific (all income levels)
Europe & Central Asia (all income levels)
® Latin America & Caribbean (all income levels)
® Middle East & North Africa (all income levels)
North America
South Asia
Sub-Saharan Africa (all income levels)

fertility.rate
a
o

40 60 80

Note that the ggplot above uses the same aes definitions as the scatterplot from the previous
section. The only difference is that we have used an augmented WorldBank data set with an
additional x.var variable that we use with facet_grid. Below, we add geoms for a time
series plot that is aligned on the fertility rate axis.

scatterTS <- scatterFacet+
geom_tallrect (aes(
xmin=year-0.5, xmax=year+0.5),
clickSelects="year",
alpha=0.5,
data=add.x.var(years, "year"))+
geom_line(aes(
x=year, y=fertility.rate, group=country, color=region),
clickSelects="country",

size=3,

alpha=0.6,

data=add.x.var(WorldBank, "year"))
scatterTS

Warning: Removed 1490 rows containing missing values (geom_point).

Warning: Removed 1490 rows containing missing values (geom_text).

48 The clickSelects keyword

Warning: Removed 759 rows containing missing values (geom_path).

life expectancy year

g
Wi region

East Asia & Pacific (all income levels)

Europe & Central Asia (all income levels)
#" Latin America & Caribbean (all income levels)
5.0 #" Middle East & North Africa (all income levels)
@1 North America

South Asia

Sub-Saharan Africa (all income levels)

fertility.rate

25

40 60 80 1960 1980 2000

The two geoms defined above occupy a new facet for the "year" value of the x.var variable
(defined by the add.x.var function). Since these two geoms have different definitions of
clickSelects, clicking each geom will update the plot in a different way. Note that for the
geom_line we specify size=3, which means a line stroke width of 3 pixels. In general it is a
good idea to increase the size of geoms with clickSelects, to make them easier to click.

Also note that we specified alpha=0.5 for the geom_tallrect and alpha=0.6 for the
geom_line. Since both of these geoms define clickSelects, some plotted lines and tallrect
will be selected, and others will not be selected. The alpha values in R code specify the
opacity of the selected objects, and other objects will have an alpha opacity which is 0.5
less than that value. In the example above, the un-selected lines will have alpha=0.1, and
the un-selected tallrects will have alpha=0 (completely transparent).

As of September 2023, it is also possible to specify the opacity, fill, and color for objects
which are not currently selected (alpha_off, fill_off, color_off). Users can specify these
parameters in the geom (not aes) to freely create a different appearance for selected and
un-selected items, instead of being forced to rely on the behavior described above. For more
information, see the discussion and example in Chapter 6, section Specifying how selection
state is displayed.

Finally, we use the R code below to render the new aligned scatterplot and time series using
animint.

(viz.facets <- animint(scatterTS))

Chapter summary and exercises 49

life expectancy year

7.5-
region
a East Asia & Pacific (all income levels)
i £0 *= Europe & Central Asia (all income levels)
% - *= Latin America & Caribbean (all income levels)
E == Middle East & North Africa (all income levels)
*= North America
South Asia
2.5- Sub-Saharan Africa (all income levels)

40 60 801960 1980 2000

The interactive data viz above contains a new panel with lines that show a fertility rate time
series over all years. Since we specified clickSelects=country for the geom_line, clicking
a line updates the set of selected countries. Since we specified clickSelects=year for the
geom_tallrect, clicking on a tallrect updates the selected year.

Exercise: add time, duration, first, and selector.types options to the data viz above.

4.7 Chapter summary and exercises

This chapter explained clickSelects, one of the two main keywords that animint introduces
for interactive data visualization design. We used the World Bank data set to show how
clickSelects can be used to specify different interactions for each of the plotted geoms.
We explained how the first option can be used to specify the selected values that are used
when the animint is first rendered. We also explained how the selector.types option can
be used to specify multiple selection variables.

Exercises:

e So far we have seen three different ways to change selection variables: (1) interactive
legends, (2) selection menus, and (3) clicking data with clickSelects. Order these
three techniques in terms from most to least direct manipulation. Which technique is
preferable in what circumstances?

e When geom_point(clickSelects=something, alpha=0.75) is rendered with the usual
R graphics device, how much opacity/transparency is present for all data points? When
animint?2 renders the same geom, some points will be selected and others not. What is
the opacity/transparency of selected points? What is the opacity/transparency of points
which are not selected?

e Add aes(size=population) to the points in the World Bank scatterplot. Is the size
legend interactive? Why?

e Add a geom_text to the World Bank scatterplot that shows the selected year.

e Add a geom_text to the World Bank time series to show the names of the selected

50 The clickSelects keyword

countries.

e Add a geom_path to the World Bank scatterplot to show data for the last 5 years.

o Use the time option to make an animated version of viz.facets.

o Use help and title params for each geom in viz.facets, to make a Tour which is
more informative about what is displayed in each geom.

Next, Chapter 5 explains several different methods for publishing and sharing animints on
the web.

../Ch05/Ch05-sharing.html

5

Sharing

This chapter explains several methods for sharing your interactive data visualizations on the
web. After reading this chapter, you will be able to view animints

e from a local directory on your personal computer.

e in R Markdown documents.

e using any web server, including Netlify Drop.

o published using GitHub pages, and organized into a group called a gallery.

5.1 Compile to a local directory

When experimenting with different interactive data visualization designs, it is useful to
preview them on your personal computer before publishing on the web. This section discusses
two methods for compiling animints to a local directory.

So far in previous chapters we have only discussed one method for creating interactive data
visualizations. If viz is an animint (list of ggplots and options with class animint), then
printing it on the R command line compiles that animint to a temporary directory, using
code like this,

set.seed (1)
ten.points <- data.frame(x=0:9, y=rnorm(10))
library(animint2)
animint (
point=ggplot ()+
geom_point (aes(
X, V),
data=ten.points)

o1

http://rmarkdown.rstudio.com/
https://app.netlify.com/drop
https://pages.github.com/

52 Sharing

}r

[] L]

0.0 2.9 2.0 7.5

X

The code above saves the animint to a new temporary directory. Rather than saving each
animint to a separate temporary directory, you can specify an output directory via the
out.dir argument to animint. If you want to save the animint in the "ChO5-sharing-ten-
points" directory, use:

animint (
point=ggplot ()+
geom_point (aes/(
X, ¥),
data=ten.points),
out.dir="ChO5-sharing-ten-points"
)

Compile to a local directory 53

[] L]

0.0 2.9 2.0 7.5

X

If the parent of out.dir does not exist, that is an error (you can use dir.create to create
the parent if necessary). If out.dir does not exist, then it will be created. If out.dir
does exist (and contains a file named animint. js), then any files in that directory will be
overwritten. To view the data viz, navigate to ChO5-sharing-ten-points/index.html in
a web browser (which should be done automatically / by default). If the web page is blank,
you may need to configure your browser to allow execution of local JavaScript code, as
explained on our FAQ.

Internally, R calls the print.animint S3 method, which calls animint2dir to compile it to
a new temporary directory on your personal computer. Generally we advise to avoid calling
animint2dir directly, but it is useful if you want to avoid opening lots of similar browser
windows when repeatedly revising and rendering an animint. You can prevent the default
behavior of opening a browser window via:

viz <- animint(
point=ggplot ()+
geom_point (aes(
X, ¥,

https://github.com/tdhock/animint2/wiki/FAQ#web-browser-on-local-indexhtml-file-is-blank
https://github.com/tdhock/animint2/wiki/FAQ#web-browser-on-local-indexhtml-file-is-blank

54 Sharing

data=ten.points))
animint2dir(
viz,
out.dir="ChO5-sharing-ten-points-again",
open.browser=FALSE)

5.2 Publish in R Markdown

To include an animint in an R Markdown document, use animint (.. .) inside of an R code
chunk. R will run the knit_print.animint S3 method, which compiles the animint to a
local directory, named based on the name of the R code chunk. For example a code chunk
named viz-facets will be saved in the directory vizfacets. Make sure to put each animint
in its own code chunk (do not put two animints in the same code chunk).

5.3 Publish on a web server

Since animints are just directories with HTML, TSV, and JavaScript files, you can publish
them on any web server by simply copying the directory to that server.

For example I executed the World Bank data viz example code to create the
WorldBank-facets directory on my personal computer.["1] I copied that directory to
my lab web server using rsync -r WorldBank-facets/ monsoon.hpc.nau.edu:genomic-
ml/WorldBank-facets/ and so I can view it on my university web server.[2]

["1] https://github.com/animint /animint2/blob/master/inst /examples/ WorldBank-facets.R
["2] https://rcdata.nau.edu/genomic-ml/WorldBank-facets/

If you don’t have access to a personal/lab web server, try using one of the methods described
below, which are free for anyone.

5.4 Publish on Netlify Drop

Netlify Drop is for hosting static web sites. To publish your data viz there, simply drag
a directory to that web page (it can be a directory resulting from animint2dir, or from
rmarkdown: :render if your animint is inside Rmd, as described above). After the upload
completes, you will be provided a link which can be used to view the files in that directory.
No registration/login is required, but if you do not register an account, your data viz will be
deleted after one hour. You can register for a free account if you want your data viz to be
available longer. Another limitation is 54,000 files per directory, as mentioned in the Deploy
Overview docs.

https://github.com/animint/animint2/blob/master/inst/examples/WorldBank-facets.R
https://rcdata.nau.edu/genomic-ml/WorldBank-facets/
https://app.netlify.com/drop
https://docs.netlify.com/deploy/deploy-overview/
https://docs.netlify.com/deploy/deploy-overview/

Publish on GitHub Pages 55

5.5 Publish on GitHub Pages

GitHub Pages is a service that provides static web site hosting, and can be used to publish
animints. To publish an animint on GitHub Pages, you need a GitHub account, and the
packages gert (for running git from R), gh (for using the GitHub API from R), and gitcreds
(for interacting with the git credential store, easy authentication when pushing to GitHub).
First, install those packages. If you don’t have a GitHub account, you can sign up for free.
Then make sure to tell R what name/email to use for git commits:

gert::git_config_global_set("user.name", "<your_full_name>")
gert::git_config_global_set("user.email", "<your_email>")

You can then use animint2pages(viz, "new_repo") function to publish your
data viz to the gh-pages branch of your_github_username/new_repo (note that
your_github_username is not specified in code, because gitcreds will get that infor-
mation from the git credential store). It should print a message which tells you the URL/link
where your data viz will be accessible. It takes a few minutes (usually not more than five)
from the time you run animint2pages, to the time the data viz is published for viewing on
GitHub Pages.

If you want to update an animint that has already been published on GitHub Pages, you
can simply run animint2pages (updated_viz, "existing_repo"), which will update the
gh-pages branch of the specified repository.

Beware that GitHub Pages imposes a limit of 100MB per file. For most animints, this limit
should not be a problem. If your data viz contains a TSV file over 100MB, consider using
the chunk_vars option to break that TSV file into several smaller files.

5.6 Organizing animints in a gallery

A gallery is a collection of meta-data about animints that have been published to GitHub
Pages. For example, the main animint gallery is https://animint.github.io/gallery/ which is
a web page that has links to various animints, organized into a table.

o There is one row for each animint.
e The first column viz.1link shows a screenshot of the animint, which links to the animint
web page.
e The second column title shows the name of the data viz (taken from the title option
of the animint).
e The third column shows 1links to
— the GitHub repo which hosts the data viz.
— the R source code used to create that animint (taken from the source option of
the animint).
— optionally, a video that explains typical interactions with the animint.

A gallery is defined as a github repo that should have two source files in the gh-pages
branch:

https://pages.github.com/
https://github.com/join
https://rcdata.nau.edu/genomic-ml/animint2-manual/Ch06-other.html#geom-options
https://animint.github.io/gallery/

o6

To

Sharing

repos.txt (list of github repositories which contain animints, one owner/repo per line),
and
index.Rmd (source for web page with links to animints).

add a new animint to the gallery which is published in the gh-pages branch of

your_github_username/gallery_repo, you can use the following method:

Create a new animint in R code, and make sure to define the source and title options.
use animint2pages(viz, "viz_repo") to publish that animint to the gh-pages branch
of your_github_username/viz_repo.

take a screenshot of that animint, and commit/push that screenshot as
a file named Capture.PNG (case-sensitive), in the gh-pages branch of
your_github_username/viz_repo.

add your_github_username/viz_repo to the repos.txt file in the gh-pages branch
of your_github_username/gallery_repo.

run the R code animint2: :update_gallery("path/to/gallery_repo") (note that a
clone of the gallery repo must be present on the system where you run this function,
and the GitHub remote must be named origin). It will read gallery_repo/repos.txt,
read meta-data (title, source, Capture.PNG) from each repo which is not already
present in gallery_repo/meta.csv, write updated meta-data files to the gallery, render
gallery_repo/index.Rmd to gallery_repo/index.html, commit, and push to origin.
the updated gallery should be viewable on the web, at https://your_ github_ username.g
ithub.io/gallery_repo after a few minutes (usually no more than five).

5.7 Chapter summary and exercises

This chapter explained how to share animints on the web.

Exercises:

Create an animint using the options mentioned in this chapter: out.dir (name of
directory to save animint on your computer), source (link to R source code used to
create animint), title (description of animint).

Use Netlify Drop to publish that animint on the web.

Use animint2pages to publish that animint to a new GitHub repository. Create a
screenshot and save it as Capture.PNG in the gh-pages branch of that repository. Add
that repository to the main animint gallery repos.txt by submitting a Pull Request on
GitHub.

Create your own animint gallery repository, and add two or more of your own animints
to that gallery.

Next, Chapter 6 explains the different options that can be used to customize an animint.

https://your_github_username.github.io/gallery_repo
https://your_github_username.github.io/gallery_repo
https://github.com/animint/gallery/blob/gh-pages/repos.txt
../Ch06/Ch06-other.html

6

New features

This chapter gives a complete list of new features in animint2, beyond what is present in
ggplot2. After reading this chapter, you will understand how to customize your animint2
graphics via

o the href, tooltip, id aesthetics for observation-specific characteristics;

e named elements of clickSelects and showSelected for specifying several selection
variables at once;

e new geoms: tallrect, widerect, label_aligned;

e the chunk_vars geom-specific option;

e the color_off, fill_off, and alpha_off geom parameters for specifying how selection
state is displayed;

e the help and title geom-specific parameters, which can be set to text strings that will
be shown in the guided tour;

« plot-specific options for legends, HTML table layout, and height /width;

e global options such as duration, title, and source.

6.1 Observation-specific options (new aesthetics)

This section explains the new aesthetics that are recognized by animint2.

6.1.1 Review of previously introduced aesthetics
First we discuss the new aesthetics that we have already introduced in previous chapters.

Chapter 3 also introduced aes(key) to designate a variable to use for smooth transitions
that are interpretable.

6.1.2 Hyperlinks using aes(href)

The code below uses animint2 to draw a map of the United States.

library(animint?2)
USpolygons <- map_data("state")
animint (

map=ggplot ()+
ggtitle("click a state to read its Wikipedia page")+
coord_equal()+
geom_polygon (aes(

o7

58 New features

x=long, y=lat, group=group,
href=paste0("http://en.wikipedia.org/wiki/", region)),
data=USpolygons, fill="black", colour="grey"))

click a state to read its Wikipedia page

lat

| |
-120 -100 -80
long

Try clicking a state in the data viz above. You should see the corresponding wikipedia page
open in a new tab.

6.1.3 Tooltips using aes(tooltip)

Tooltips are little windows of text information that appear when you hover the cursor
over something on the screen. In animint2 you can use aes(tooltip) to designate the
observation-specific message that appears. For example we use it to display the population
and country name in the scatterplot of the World Bank data below.

data(WorldBank)
WorldBank1975 <- subset(WorldBank, year == 1975)
animint (
scatter=ggplot O+
geom_point (aes/(
x=life.expectancy, y=fertility.rate,
tooltip=paste(country, "population =", population)),
size=5,

Observation-specific options (new aesthetics) 59

data=WorldBank1975))

| °®
8 o - .,l.
o ok °%

fertility.rate
! 4

40 20 60 70

life.expectancy

Try hovering the cursor over one of the data points. You should see a small box appear with
the country name and population for that data point.

Note that a tooltip of the form “variable value” is specified by default for each geom
with aes(clickSelects). For example a geom with aes(clickSelects=year) shows the
default tooltip “year 1984” for an observation with year 1984. You can change this default
by explicitly specifying aes(tooltip).

6.1.4 HTML id attribute using aes(id)
Since everything plotted by animint2 is rendered as an SVG element in a web page, you

may want to specify a HTML id attribute using aes(id) as below.

animint (
map=ggplot () +

http://www.w3schools.com/html/html5_svg.asp
http://www.w3schools.com/tags/att_global_id.asp

60 New features

ggtitle("each state/region/group has a unique id")+
coord_equal()+
geom_polygon (aes(

x=long, y=lat, group=group,

id=gsub(" ", "_", paste(region, group))),

data=USpolygons, fill="black", colour="grey"))

each state/region/group has a unique id

lat

| |
-120 -100 -80

long

Note how gsub is used to convert spaces to underscores, since a well-defined id must not
include spaces. Note also that paste is used to add a group number, since there may be
more than one polygon per state/region, and each id must be unique on a web page. The
animint2 developers use this feature for testing the animint JavaScript renderer code.

6.1.5 Data-driven selector names using named clickSelects and showSe-
lected

Chapter 3 introduced showSelected for designating a geom which shows only the selected
subset of its data.

Chapter 4 introduced clickSelects to designate a geom which can be clicked to change a
selection variable.

Usually selector names are defined in showSelected or clickSelects. For example,
showSelected=c("year", "country") means to create two selection variables (named
year and country). However, that method becomes inconvenient if you have many selectors

https://github.com/tdhock/animint/wiki/Testing

New geoms 61

in your data viz. To illustrate we consider the following theoretical example (the code in this
section is not directly executable). Say you want to use 20 different selector variable names,
selectorivalue .. selector20value. The usual way to define your data viz would be

viz <- list(
points=ggplot()+
geom_point(clickSelects="selectorlvalue", data=datal)+

geom_point(clickSelects="selector20value", data=data20)
)

However that method is bad since it violates the DRY principle (Don’t Repeat Yourself).
Another way to do that would be to use a for loop:

viz <- list(points=ggplot())
for(selector.name in pasteO("selector", 1:20, "value")){
data.for.selector <- all.data.list[[selector.name]]
viz$points <- viz$points +
geom_point(clickSelects=selector.name, data=data.for.selector)

}

That method is bad since it is slow to construct viz, and the compiled viz potentially takes
up a lot of disk space since there is at least one TSV file created for each geom_point. The
preferable method is to use a named character vector for clickSelects. The names should
be used to indicate the column that contains the selector variable name. For example:

viz <- list(
points=ggplot()+
geom_point (
clickSelects=c(selector.name="selector.value"),
data=all.data)
)

The animint2dir () compiler looks through the data.frame all.data and create selectors
for each of the distinct values of all.data$selector.name. Clicking one of the data points
updates the corresponding selector with the value indicated in all.data$selector.value.

You can similarly use one geom with a named showSelected instead of a bunch of different
geoms with showSelected.

This feature is useful not only to avoid repetition in the definition of the data viz, but also
because they are more computationally efficient. For a detailed example with timings and
disk space measurements, see Chapter 14.

6.2 New geoms

There are several new geoms in animint2, with respect to the geoms that are provided in
ggplot2.

../Ch14/Ch14-PeakSegJoint.html

62 New features

6.2.1 Tall and wide rectangles for selection

Tall and wide rectangles are special cases of geom_rect which by default cover the entire
Y /X range.

e geom_tallrect() covers the entire Y range, and was first introduced in Chapter 4.
e geom_widerect () covers the entire X range, and is discussed in Chapter 8.

Both are useful in combination with clickSelects, so we also provide helper functions for
this common use case:

e make_tallrect(data, "x_variable") creates a rectangle for each unique value of the
column with name x_variable in data.

o make_widerect(data, "y_variable") creates a rectangle for each unique value of the
column with name y_variable in data.

Both of these are capable of showing smooth transitions for the selected rectangle, as in the
WorldBank data visualization with two time series facets.

o a expanded data set with N”2 rows is computed for N unique values to select.

o there are N sets of rows, each with a different showSelected value.

e in each showSelected subset, the selected value has a special aes(key) value.

o 50 the result is a smooth transition: when we change the selection, we see the selected/spe-
cial row moving to its new position (and all of the others are invisible).

For more discussion about this technique, see Chapter 11.

6.2.2 Aligned labels for avoiding overlapping text

When using multiple selection, it is often useful to display text labels to indicate the
items in the selection set. When labels are aligned (with the same X or Y value), then
geom_label_aligned() can be used to adjust positions, to avoid overlapping labels. For
example, the WorldBank data visualization shows a text label before the first year of each
selected country’s time series. For more discussion about this technique, see Chapter 8.

6.3 Geom options

In animint2, there are several options for customization at the geom level: chunk_vars is
used to specify how to split data sets for storage on disk, and *_off parameters are used to
specify how a clickSelects geom should be displayed when it is not selected. Additionally,
help and title may be specified, to add information to the guided tour.

6.3.1 The chunk_vars geom-specific compilation option

The chunk_vars option defines the selection variables that are used to split the data set into
separate chunks (TSV files) to download. There is one TSV file created for each combination
of values of the chunk_vars variables. More selection variables specified in chunk_vars
means to split the data set into more TSV files, each of a smaller size.

The chunk_vars option should be specified as an argument to a geom_* function, and its value
should be a character vector of selection variable names. When chunk_vars=character (0),
a character vector of length zero, all of the data is stored in a single TSV file. When

../Ch04/Ch04-clickSelects.html
../Ch08/Ch08-WorldBank-facets.html
https://tdhock.github.io/2025-01-WorldBank-facets-map/
../Ch11/Ch11-lasso.html
https://tdhock.github.io/2025-01-WorldBank-facets-map/
../Ch08/Ch08-WorldBank-facets.html

Geom options 63

chunk_vars is set to all of the showSelected variable names, then a TSV file is created for
each combination of values of those variables.

In general the animint2dir () compiler chooses a sensible default for chunk_vars, but you
may want to specify chunk_vars if the data viz is loading slowly, or taking up too much space
on disk. If the data viz is loading slowly, you should add selection variables to chunk_vars
to reduce the size of the first TSV file to download. If the data viz takes up too much space
on disk, you should remove selection variables from chunk_vars to decrease the number of
TSV files. Lots of small TSV files can take more disk space than a single TSV file because
some filesystems store a constant amount of metadata for every file.

To illustrate the usage of chunk_vars, consider the following visualization of the breakpoints
data set.

Figure 6.1: Breakpoints data viz

The sketch above consists of two plots. We begin by creating the plot of error curves on the
left.

data(breakpoints)
only.error <- subset(breakpoints$error, type=="E")
only.segments <- subset(only.error,bases.per.probe==bases.per.probe[1])
library(data.table)
fp.fn.names <- rbind(
data.table(error.type="false positives", type="FP"),
data.table(error.type="false negatives", type=c("I", "FN")))
error.dt <- data.table(breakpoints$error)
error.type.dt <- error.dt[fp.fn.names, on=list(type)]
fp.fn.dt <- error.type.dt[, list(
error.value=sum(error)
), by=.(error.type, segments, bases.per.probe)]
errorPlot <- ggplot()+
ggtitle("select data and segments")+
theme_bw()+
geom_tallrect (aes(
xmin=segments-0.5, xmax=segments+0.5),
clickSelects="segments",
data=only.segments,
alpha=1/2)+
geom_line(aes(
segments, error.value, color=error.type,
group=paste (bases.per.probe, error.type)),
showSelected="bases.per.probe",
data=fp.fn.dt,
size=b)+
scale_color_manual (values=c(
"false positives'"="red", "false negatives"="blue"))+

64 New features

geom_line (aes(
segments, error, group=bases.per.probe),
clickSelects="bases.per.probe",
data=only.error,
size=4)+
scale_x_continuous(breaks=c(1, 6, 10, 20))
errorPlot

select data and segments

15+

E t
=2 10+ error.type
> M false negatives
2 M false positives
©

5 -

0 4

1 6 10 20
segments

The plot above includes a geom_tallrect with clickSelects=segments and a geom_line
with clickSelects=bases.per.probe. It will be used to select the data and model in the
plot below.

signalPlot <- ggplot()+
theme_bw()+
theme (panel .margin=grid::unit(0, "lines"))+
theme_animint (height=800)+
geom_point (aes(
position/1le5, signal),
showSelected="bases.per.probe",
shape=1,
data=breakpoints$signals)+
geom_segment (aes (
first.base/leb, mean, xend=last.base/leb5, yend=mean),
showSelected=c("segments", "bases.per.probe"),
color="green",
data=breakpoints$segments)
signalPlot+facet_grid(segments ~ bases.per.probe)

Geom options 65

signal

0C6T8TLTOTSTVTETCTTIOT 6 8 L9 G ¥V € ¢C|T

4 6 80

position/1e+05

The non-interactive plot above has 80 facets, one for each combination of the two
showSelected variables, bases.per.probe and segments. Below we make an interactive
version in which only one of these facets will be shown.

(viz.chunk.vars <- animint(
errorPlot,
signal=signalPlot+
geom_vline (aes(

xintercept=base/1eb),
showSelected=c("segments", "bases.per.probe"),
color="green",
chunk vars=character(),
linetype="dashed",
data=breakpoints$breaks)))

66 New features

5.0
. .
- .,
2.5+ . .
. . ‘., v
x - . ®
. <. R *
. % . et e
.. 4 . . o o, o
. 2 ” S T e 3 .
.) .
..-'.‘ -‘.'t.'-l"’."'.: ':% 2:: *e
e et e 1'0‘“
BRI P R L L P
MR .:" teel N e e
= ottt aat e A0,
. . e t—-b—‘a‘ﬁ"—1.
En 0.0 R .:‘ o :.': Clad .o .. c:"‘ - 2.
] "~ ~ .Jf » L . L
T pate A P
s o ’ . .
select data and segments .’-;ﬁ“° . T, ee TR
Y R - . s o -
. " 'g" .:q . . .
b Fal ot . LI I) . oy
“:S - ".. . b : K]
et 2t e .
. . .
- . e -
254 *° :
g 254
E
r error.type . .
T === false negatives
" . .
=== false positives
-5.04
I 1 1 I I
0 2 4 6 8
segments position/le+05

Click the “Show download status table” button, and you should see counts of chunks (TSV
files). Note that geom6_vline_signal has only 1 chunk, since chunk_vars=character ()
is specified for the geom_vline in the R code above. If another value of chunk_vars was
specified, it would create a different number of TSV files, but the appearance of the data viz
should be the same.

Below we use the du command line program to determine the disk usage of the data viz for
different choices of chunk_vars.

tsvSizes <- function(segment.chunk.vars){
viz <- list(
error=errorPlot,
signal=signalPlot+
geom_vline (aes(

xintercept=base/1leb),
showSelected=c("segments", "bases.per.probe"),
color="green",
chunk_vars=segment.chunk.vars,
linetype="dashed",
data=breakpoints$breaks)

Geom options 67

info <- animint2dir(viz, open.browser=FALSE)
cmd <- paste("du -ks", info$out.dir)
kb.dt <- fread(cmd=cmd)
setnames(kb.dt, c("kb", "dir"))
tsv.vec <- Sys.glob(pasteO(info$out.dir, "/*.tsv"))
is.geom6 <- grepl('"geom6", tsv.vec)
data.frame(
kb=kb.dt$kb,
geom6 . tsv=sum(is.geom6),
other.tsv=sum(!is.geom6))
}
chunk_vars_list <- list(
neither=c(),
bases.per.probe=c("bases.per.probe"),
segments=c("segments"),
both=c("segments", "bases.per.probe"))
sizes.list <- lapply(chunk_vars_list, tsvSizes)
(sizes <- do.call(rbind, sizes.list))

kb geom6.tsv other.tsv

neither 840 1 12
bases.per.probe 844 5 12
segments 900 19 12
both 1128 76 12

The table above includes counts of kilobytes for the data viz, along with counts of TSV files
for geom6_vline_signal and the other geoms. Note how the choice of chunk_vars affects
the number of TSV files and the disk space usage. Since chunk_vars was only specified
for geom6_vline_signal, the number of TSV files for the other geoms does not change.
When both segments and bases.per.probe are specified for chunk_vars, there are 76
TSV files for geom6_vline_signal, and the data viz takes 1128 kilobytes. In contrast,
chunk_vars=character() produces only one TSV file for geom6_vline_signal, and the
data viz uses 840 kilobytes.

In conclusion, the geom-specific chunk_vars option defines the number of TSV files created
for each geom. When deciding the value of chunk_vars, you should consider both disk usage
and loading time. A few large files take up less disk space but are slower to download than
many small files.

6.3.2 Specifying how selection state is displayed
Different geoms in animint2 have sensible defaults for displaying selection state. In particular,

e when there is a rect or tile with clickSelects, we use black color/border to show
items which are selected, and transparent for items which are not selected.

o for any other geom with clickSelects, we use full opacity alpha to show items which
are selected, and alpha-0.5 opacity to show items which are not selected.

The defaults explained above are illustrated in the first plot below. Those defaults may be
customized by using the alpha_off, £ill_off, and color_off geom parameters as in the
code below,

68

N <- 3
set.seed (1)
demo_df <- data.frame(i=1:N, num=rnorm(N,2))
animint (
defaults=ggplot)+
ggtitle("Defaults, no *_off")+
geom_tile(aes(
i, 0),
size=5,
clickSelects="1i",
data=demo_df)+
geom_point (aes(
i, num),
size=5,
clickSelects="1i",
data=demo_df),
off=ggplot)+
ggtitle("User specified alpha_off, fill_off, color_off")+
geom_tile(aes(
i, 0, fill=i),
clickSelects="1i",
color="red",
color_off="pink",
size=5,
data=demo_df)+
geom_point (aes(
i, num),
size=5,
alpha=0.5,
alpha_off=0.1,
clickSelects="1i",
data=demo_df)+
geom_point (aes(
i, -num),
size=5,
alpha=1,
alpha_off=1,
color="red",
color_off="black",
fill="grey",
fill off="white",
clickSelects="1i",
data=demo_df))

New features

Geom options 69

_ Defaults, no *_off User specified alpha_off, fill_off, color_off
a
2 24
]
° 1
L4 i
14
o [=RE o
|:
H:
=
l
o]
° [
-24
o]
1 2 3 ' 1 2 3 '

i i

Note that when using any one of these visual properties in the aes mapping, it should not
be specified as a geom parameter. For example in the tile above, we used aes(fill), so
£ill and £ill_off should not be specified as parameters for that geom (in order to make
it clear that fill is used for displaying data values, not selection state).

6.3.3 Specifying guided tour text

Since Jan 2025, animint?2 supports a guided tour, which displays information about possible
interactions with each geom. To customize what is displayed for each geom, you can specify
the help and title parameters, as in the code below.

animint(
scatter=ggplot O+
geom_point (aes/(
x=1ife.expectancy, y=fertility.rate, color=region),
size=5,
showSelected="year",
clickSelects="country",
help="0One point drawn for each country in the selected year",
alpha=0.7,
data=WorldBank)+
geom_text (aes(
x=life.expectancy, y=fertility.rate, label=country),
data=WorldBank,
title="Selected country",
showSelected=c("year","country")),
first=1list(
country="France",
year=1980))

70 New features

7.5+
@ region
8 East Asia & Pacific (all income levels)
E 5.04 Europe & Central Asia (all income levels)
E Latin America & Caribbean (all income levels)
= Middle East & North Africa (all income levels)
North America
2.5+ South Asia
France Sub-Saharan Africa (all income levels)
T T T 1

40 60 80

life.expectancy

In the code above, we specify help for geom_point, which controls the sub-text which is
displayed for that geom, after clicking the “Start Tour” button at the bottom of the data
visualization. After clicking the “Next” button, we can see the title that was specified in
the code, shown at the top of the tour window, for the geom_text. This mechanism can be
used to provide extra helpful information for the users of your data visualization, so they
can more easily understand what is displayed, and what interactions are possible.

6.4 Plot-specific options

This section discusses options which are specific to one ggplot of a data viz. The
theme_animint function is used to attach animint2 options to ggplot objects.

6.4.1 Plot height and width

The width and height options are for specifying the dimensions (in pixels) of a ggplot
rendered by animint2. For example, consider the following re-design of the plot of the
United States:

animint (
map=ggplot)+

theme_animint(width=750, height=500)+

theme (
axis.line=element_blank(),
axis.text=element blank(),
axis.ticks=element_blank(),
axis.title=element_blank(),
panel.border=element_blank(),

Plot-specific options 71

panel.background=element_blank(),
panel.grid.major=element_blank(),

panel.grid.minor=element_blank())+
geom_polygon (aes(

x=long, y=lat, group=group),

data=USpolygons, fill="black", colour="grey"))

SRR,
‘li.-g_!}' 4
T
*.gn

Note that the plot above was rendered with a width of 750 pixels and a height of 500 pixels,
due to the theme_animint options. If either of these options is not specified for any ggplot,
then animint2 uses a default of 400 pixels.

Also note that theme was used to specify several blank elements. This has the effect of
removing the axes and background, and is generally useful for rendering maps.

6.4.2 HTML table layout

Since summer 2025, animint2 supports plot layout in an HTML table. A typical example is
when you want to display three linked plots, with one plot to the right of two other plots,
as in this visualization of cross-validation for change-point model selection. To specify the
HTML table layout, we use three new arguments in theme_animint ():

o rowspan=2 means the plot takes up two rows in the table (default 1).

o colspan=2 means the plot takes up two columns in the table (default 1).

e last_in_row=TRUE means the plot is last in the current row, so the next plot will appear
on the next row.

o if none of these are specified in any plots, then we use the classic layout (no HTML table,
each plot appears one after the other, and is wrapped to the next row if there is not
enough horizontal space).

For example, consider the demo below:

https://tdhock.github.io/figure-binseg-cv-most-frequently-selected-fr/

72 New features

df <- data.frame(x="foo")
animint (
left=ggplot)+
theme_animint (width=200, rowspan=2)+
geom_point (aes(x, x, color=x), data=df),
topRight=ggplot ()+
theme_animint (width=200, height=200, last_in_row=TRUE)+
geom_point(aes(x, x, color=x), data=df),
bottomRight=ggplot ()+
theme_animint (width=200, height=200)+
geom_point(aes(x, x, color=x), data=df))

= foo 4 .
X
* foo
. |
foo
= foo . X
X
* foo T
» foo .
X
* foo
T |
foo fnlln '
X X

The visualization above shows one plot on the left, with two plots on the right, as expected.

6.4.3 Size scale in pixels

The scale_size_animint () scale should be used in all ggplots where you specify aes(size).
To see why, consider the following examples.

scatter1975 <- ggplot()+
geom_point (
aes(x=life.expectancy, y=fertility.rate, size=population),
WorldBank1975,

Plot-specific options 73

shape=21,
color="red",
fill="black")
(viz.scale.size <- animint(

ggplotDefault=scatter1975+
ggtitle("no scale specified"),

animintDefault=scatter1975+
ggtitle("scale_size_animint()")+
scale_size_animint(),

animintOptions=scatter1975+
ggtitle("scale_size_animint(pixel.range, breaks)")+
scale_size_animint(pixel.range=c(5, 15), breaks=10"(10:1))))

no scale specified _ scale_size_animint() _scale_size_animint(pixel.range, breaks)

®e .) o % o
i e G R
6 % :‘? o3l LI 6-| *¢ * Wy
o ol 75 S ve® . P X o ‘...r. population
'_5 & oo, ¥° population f; *. ®e ® s
% N B sm% b N] o e
2 4 . g

Pl 750008 =
. @ s0ci08 a4 . * ® 1et06
: ® 25008) o e
T, ® . e
.:%i; .:!i; eros
2]

40 50 60 70 ' 40 50 60 70 ' 40 50 60 70

life.expectancy life.expectancy life.expectancy

The first ggplot above has no scale specified, so it uses the default ggplot2 scale, which
has two problems. The first problem is that it seems that all countries have about the
same size except the two really big countries. That problem can be fixed by simply adding
scale_size_animint () to the ggplot, which results in the second plot above. However, a
second problem is that the legend entries do not show the full range of the data. That
problem is fixed in the third plot above, by manually specifying the breaks to use for legend
entries. Note that the pixel.range argument can also be used to specify the radius of the
largest and smallest circles.

6.4.4 Axes and legend text size

The syntax of defining axes and legend text size(in pixels) is almost the same as ggplot2.
Inside theme, you can use numbers directly to change the font size, or you can use rel() to
define the relative size.

scatter1975 <- ggplot()+
geom_point (aes(
x=life.expectancy, y=fertility.rate, color=region),
data=WorldBank1975)
(viz.text.size <- animint(
animintDefault=scatter1975+
theme_animint (width=500, height=500)+
ggtitle("no axes and legend size specified"),
animintAxesOptions=scatter1975+
theme_animint (width=500, height=500)+
theme (axis.text=element_text (size=20))+
ggtitle("axis.text=element_text(size=20)"),

74 New features

animintLegendOptions=scatter1975+
theme_animint (width=500, height=500)+
theme (
legend.title=element_text(size=24),
legend.text=element_text(size=rel(2.5)))+
ggtitle("legend.text=element_text(size=rel(2.5)")))

10 axes and legend size specifed axis text-element texisize=20)

legend tex-clement tex(size-rel25)

region
- East Asia & Pacific (all income levels)
- Europe & Central Asia (all income levels)
- Latin America & Caribbean (all income levels)
- Middle East & North Africa (all income levels)
* North America

South Asia

Sub-Saharan Africa (all income levels)

B % @ = 4 50 60 70 = = =

This allows you to change the font size while changing the size of the plot to make it look
more coherent.

Note that the default font size in animint?2 is 11px for the axes and 16px for the legend.

6.5 Global data viz options

Global data viz options are any named elements of the viz list that are not ggplots.

6.5.1 Review of previously introduced global options
Chapter 3 introduced the duration option for specifying the duration of smooth transitions.

Chapter 3 introduced the time option for specifying a selection variable which is automatically
updated (animation).

Chapter 4 introduced the first option for specifying the selection when the data viz is first
rendered.

Chapter 4 introduced the selector.types option for specifying multiple selection variables.

6.5.2 Web page title with the title option

The title option should be a character string, and will be used to set the <title> element
of the web page. It does not make sense to use the title option in an Rmd document such
as this page. A title can and should be used with animint2dir (), as in the code below.

viz.title <- viz.scale.size
viz.title$title <- "Several size scales"
animint2dir(viz.title, "ChO6-title")

Note that viz.scale.size already has three ggplots, each with a ggtitle. Adding the
global title option has the effect of defining a title for the web page.

../Ch06/Ch06-title/index.html

Global data viz options 75

6.5.3 Link R code with source option

The source option should be a character string: a link to the R source code which was used
to create the animint.

animint (
demo=ggplot () +
geom_point (aes(
Petal.Length, Sepal.Length),
data=iris),
source=
"https://github.com/tdhock/animint-book/edit/master/Ch06-other.Rmd")

B_
.
. - e
™
.
™
. -
-
7 .
M
(] - &
L I
—_ W
=] ™ - 8 W
=0 -a -
5 " e . "
.-e » ™
—] . - e .
—_ B . . = e
i . " @
E—- ™ a.n ™
e - - . '
e . o ae ™
- -
L
™
- »
1 -
5 — LTt . n
- ™ ™
-
" &
L] [1]
™
-
]
T T T 1
2 4 6

Petal.Length

Note above how there is a source link at the bottom of the data viz.

Chapter 5 introduced the animint2pages function, which is used to publish an animint to
GitHub Pages. It requires that the animint defines the title and source options, because
that meta-data is required for organizing the animint in a gallery.

76 New features

6.5.4 Link a video

The video option should be a character string: a link to a video which shows typical
interactions with the animint. This mechanism can be used to help the users of your data
visualization understand what is displayed, and what interactions they can use.

animint (
video="https://vimeo.com/1050117030",
scatter=ggplot)+
geom_point (aes(

x=1life.expectancy, y=fertility.rate, color=region),
clickSelects="country",
alpha=0.7,
data=WorldBank1975))

84
6 .
o region
= East Asia & Pacific (all income levels)
=
= Europe & Central Asia (all income levels)
E Latin America & Caribbean (all income levels)
=
4 Middle East & Naorth Africa (all income levels)
North America
South Asia
Sub-Saharan Africa (all income levels)
2 -
T T T T 1

40 20 60 70

life.expectancy

In the data visualization above, notice the “video” link which appears in the bottom right.
Clicking that link leads to a video that was recorded to explain a more complex data
visualization based on the World Bank data. The idea is that you can record a video for
each of your animints, and then include a link to the video using this mechanism, so your
users can more easily understand what is displayed, and what interactions are possible.

6.5.5 Show or hide selection menus with the selectize option

The selectize option should be a named list of logical values. Names should be selector
variables, and values should indicate whether or not you would like to render a selection
menu via selectize.js. By default, animint2 will render a selection menu for every selection
variable, with two exceptions:

« data-driven selection variables that are defined using named clickSelects/showSelected
variables.
« selection variables that have a lot of values (they are slow to render).

http://selectize.github.io/selectize.js/

Chapter summary and exercises 7

These defaults should work well for the vast majority of animints. For those who are interested
to see an example of how the selectize option works, please see the PredictedPeaks test in
the animint2 source code.

6.6 Chapter summary and exercises

This chapter explained several options for customizing animints at the observation, geom,
plot, and global level.

Exercises:

o Create other versions of viz.chunk.vars with different values of chunk_vars for the
geom_point and geom_segment. How does the choice of chunk_vars affect the appear-
ance of the visualization? The disk space? The loading time?

Next, Chapter 7 explains the limitations of the current implementation of animint2.

https://github.com/tdhock/animint2/blob/master/tests/testthat/test-renderer2-PredictedPeaks.R
https://github.com/tdhock/animint2/blob/master/tests/testthat/test-renderer2-PredictedPeaks.R
../Ch07/Ch07-limitations.html

7

Limitations

This chapter explains several known limitations of animint2 for some interactive data
visualization tasks. It also explains some workarounds that you can use in these situations.
After reading this chapter, you will understand how to

o Use a normalized variable when different showSelected subsets have very different values
of a variable you want to display.

o Compute statistics for each showSelected subset, rather than relying on the stat_x*
functions in ggplot2.

¢ Add data one at a time to a multiple selection variable set, rather than using a rectangular
selection brush.

e Avoid using vjust and labels with multiple lines in geom_text.

e Order the plots on the page.

¢ Avoid using some unsupported theme options.

o Use facets with multiple variables per axis.

o Use the shiny web server package to interactively change the aesthetic mapping of an
animint, or to perform computations based on selected values.

If you have an idea for improving animint2 so that it overcomes one of these limitations,
the animint2 developers would be more than happy to review your Pull Request.

7.1 Use normalized variables to work with fixed scales

We implement axes and legends in the same way ggplot2 does, by computing them once
when the plot is first rendered. As a consequence, the axes and legends in each animint
plot are not interactive. For most animated data visualizations, fixed axes make it easy to
understand how the data changes along with the time variable.

There are some situations where it would be useful to have axes that interactively update.
One example is when different showSelected subsets have very different values for variables
that are shown with an axis or legend. In this case it would be useful to have interactive
axes that update and change along with the data. We have experimental support for this,
see the update axes test for details.

79

https://github.com/tdhock/animint2/compare
https://github.com/tdhock/animint2/blob/master/tests/testthat/test-renderer4-update-axes-multiple-ss.R

80 Limitations

7.2 Compute statistics for each showSeleted subset

Animints do not support ggplot2 statistics with showSelected. For example, consider the
facetted ggplot below.

set.seed (1)
library(data.table)
random.counts <- data.table(
letter = c(replicate(4, LETTERS[1:5])),
count = c(replicate(4, rbinom(5, 50, 0.5))),
stack = rep(rep(factor(
c("lower","upper"), c("upper","lower")
), each = 5), 2),
facet = rep(1:2, each = 10))
library(animint2)
ggstat <- ggplot() +
theme _bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
geom_bar (aes(
letter, count,
key=paste(letter, stack),
£fill = stack),
showSelected="facet",
data = random.counts,
stat = "identity",
position="stack"
)
ggstat+facet_grid(facet ~ ., labeller=label_both)

Compute statistics for each showSeleted subset 81

lIlI. stack

8' . upper

I I .Iower
A B C D E

letter

60 -

401

T 1998}

20+

40+

Z 19%%e)

201

0_

Using showSelected instead of facets does not result in what you may expect.
animint (
plot = ggstat,
duration = list(facet = 1000))

mapping: x = letter

y = count

key = paste(letter, stack)
fill = stack
showSelectedl = facet

showSelected2 = stack
geom_bar: width = NULL
na.rm = FALSE

stat_identity: na.rm = FALSE
position_stack

Warning in f£(...): showSelected only works with position=identity, problem:
geoml_bar_plot

82 Limitations

60 -

stack
B upper
B lower
) I
{}_
: | | | | | :

A B C D E

letter

Try changing the selection from facet 1 to 2. The data viz above shows bars moving from
top to bottom, indicating that position=stack has only been computed globally (not for
each showSelected subset).

count

A workaround is to compute what you want to display, and use position=identity, which
is demonstrated in the code below.

random.cumsums <- random.counts[, data.table(
cumsum=cumsum (count) ,
count,
stack
), by=.(letter, facet)]
ggidentity <- ggplot() +
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
geom_segment (aes (
x=letter, xend=letter,
y=cumsum, yend=cumsum-count,
key=paste(letter, stack),
color=stack),
showSelected="facet",
data = random.cumsums,

Compute statistics for each showSeleted subset 83

size=10,
stat = "identity",
position="identity")
ggidentity+facet_grid(facet ~ ., labeller=label_both)
60+
40+ .
&
&
201 .
stack
IS
é 0 . upper
60 -
3 . lower
40+ .
Q
(@]
&
N
20+
0- T T T T T
A B C D E
letter

Note how we used geom_segment instead of geom_bar, but their appearance is similar.

animint (
plot = ggidentity,
duration = list(facet = 1000))

84 Limitations

40-

stack

" upper

Cumsum

20-

N Jower

G_
m_

|
C

letter

m_

A

Try changing the selection from facet 1 to 2. The data viz above shows bars adjusting their
size, indicating that using position=identity is a valid work-around.

7.3 Add values to a multiple selection set one at a time

Animint does not support a rectangular brush or lasso for interactively defining a set of
selected values. Instead, animint supports multiple selection by adding values one by one
to the multiple selection set. Use the selector.types option to declare a multiple selection
variable.

7.4 Adjust y instead of using vjust with geom_text

For horizontal text alignment, animint supports using hjust in R with the most common
values: 0 for left alignment, 0.5 for middle alignment, and 1 for right alignment. Animint
translates these three hjust values to the text-anchor property in the rendered data viz.

However, animint geom_text does not support vertical text alignment using vjust in R,

Adjust y instead of using vjust with geom_tezt
because there is no property that can be used for vertical text alignment in SVG.

line.df <- data.frame(just=c(0, 0.5, 1))
text.df <- expand.grid(
vjust=line.df$just,
hjust=line.df$just)
gg.lines <- ggplot()+
theme _bw()+
geom_vline (aes(xintercept=just), data=line.df, color="grey")+
geom_hline(aes(yintercept=just), data=line.df, color="grey")
gg.vjust <- gg.lines+
geom_text (aes(
hjust, vjust, label="qwerty", hjust=hjust, vjust=vjust),
data=text.df)

gg.vjust+ggtitle ("R graphics devices respect aes(vjust)")

R graphics devices respect aes(vjust)

1.00+

qwerty qwerty qwerty

0.75+

vjust

o0 QWerty gwerty qwerty

0.25+

25 0.50 0.7
hjust

ol QUErty qwerty qwerty

1.00

Note how both hjust and vjust are respected in the static ggplot above. In contrast, consider
the animint below. The left plot should be the same as the ggplot above, but there are clear
differences in terms of vertical placement of the text elements.

(viz.just <- animint(
vjust=gg.vjust+
ggtitle("animint does not support aes(vjust)"),
workaround=gg.lines+
ggtitle ("workaround: no aes(vjust), add to y")+
geom_text (aes(
hjust, vjust + (0.5-vjust)*0.03 - 0.01,
label="qwerty", hjust=hjust),

86 Limitations

data=text.df)))

[1] 0.5 1.0

Warning in vjustWarning(g.data$vjust): animint only supports vjust=0

animint does not support aes(vjust)) workaround: no aes(vjust), add to y
1.00 - Gwerty ULy queryt 1.00- qwWerty qwerty qwerty
2
0.75- < 0.75-
S
=
*
g_ 0.50 —gwerty quirty qwerty 2 0.50- qwerty qwerty qwerty
= =
0
=
0.25- + 0.25+
2
-
0.00 - gwerty gwerty gWerty. 0.00 - gwerty qwerty qwerty
000 025 050 075 1.00 000 025 050 075 1.00
hjust hjust

The workaround in animint is shown in the right panel above. You can adjust the vertical
position y values of the text elements for which you would have used vjust.

It is possible to implement vjust support for geom_text in animint, but we haven’t yet
had time to work on it. If you would like to implement it, we would be more than happy to
accept a Pull Request. We already have an issue explaining how to implement it.

Another work-around is to use the new geom_label_aligned, which does support vjust.
For an example, please read Chapter 8.

7.5 Order the plots on the page

Currently the only way to organize a multi-plot data viz is using the order of the ggplots in
the animint viz list. The plots will appear on the web page in the same order as they occur

in the animint viz list. For example, compare the data viz below with the data viz from the
previous section.

animint (
first=viz.just$workaround,
second=viz. just$vjust)

[1] 0.5 1.0

Warning in vjustWarning(g.data$vjust): animint only supports vjust=0

https://github.com/tdhock/animint/issues/148
../Ch08/Ch08-WorldBank-facets.html

Awvoid line breaks in text labels 87

workaround: no aes(vjust), add to y) animint does not support aes(vjust)
1.00- qWerty qwerty qwerty 1.00 - gwerty FuErty querty
=)
< 0.75- 0.75-
a2
=
=
*
Z 050~ qweny querly qwerty | 5 0,50 qwery ety ey
2 2
0
e
+ 0.25+ 0.25-
2
-
0.00 - gwerty gwerty qwerty. 0.00 - gwerty qwerty gwerty.
000 025 050 075 100 000 025 050 075 100
hjust hjust

Note how the order of plots is reversed with respect to the data viz from the previous section.
The main limitation of this method for plot layout is that only the order can be controlled.
For example, depending on the width of the web page element in which the data viz above
is rendered, the second plot will appear either below the first plot, or to the right of it.

If you have an idea for a better way to define the layout of plots in an animint, please tell us!

7.6 Avoid line breaks in text labels

When rendering a ggplot using regular R graphics devices, using a line break or newline \n
in a geom_text label results in multiple lines of text on the plot.

gg.return <- ggplot()+
geom_text (aes(
hjust, vjust, label=sprintf ("x=%.1f\ny=%.1f", hjust, vjust)),
data=text.df)
gg.return

https://github.com/tdhock/animint2/issues

88

=1.0 y=1.0 y=1.

Limitations
1.00

=0.0 x=0.5 x=1.
=0.5 y=0.5 y=0.

vjust
o
(o)
o

=0.0 x=0.5 x=1.

0.00 0.25

— - ' —
0.50 0.75 1.00
hjust

However, animint only supports drawing the first line of text.

animint (gg.return)

Awvoid line breaks in text labels 89

1,[1&;5'-0 y=1.0 x=0.5 y=1.0 x=1.0 y=1
0.75

%, 0.50P-0¥=0.5 x=0.5 y=0.5 x=1.0 y=(
0.25

0.00=0-0 y=0.0 x=0.5 y=0.0 x=1.0 y=(

EI.III}D EI.IEE- II].IED U.IT"E l.E]IIEII

hjust

It would be nice to support multiple lines in geom_text labels, but we have not yet had
time to implement that. However, we have an issue, and would be willing to accept a Pull
Request which implements that.

Until then, the workaround is to use one geom_text layer for each line of text that you want
to display:

gg.two.lines <- ggplot()+
geom_text (aes(
hjust, vjust, label=sprintf("x=).1f", hjust)),
data=text.df)+
geom_text (aes(
hjust, vjust-0.05, label=sprintf("y=%.1f", vjust)),
data=text.df)
gg.two.lines

https://github.com/tdhock/animint/issues/149

0.75-

=88

0.25-

L

0.00 0.25

vjust

animint (gg.two.lines)

0.75

Limitations

Awvoid some ggplot theme options 91

1.00 Jx=0.0 x=0.3 x=1.0
y=1.0 v=10 y=1.0

o &

0.75

0.50 Jx=0.0 =0.5 x=1.0
y=0.5 y=0.5 y=0.5

just

¥

0.25

0.00 Jx=0.0 x=0.3 x=1.0
y=0.0 v=0.0 y=0.0

T
0.00 0.25 0.50 0.75 1.00
hjust
Also note in these examples that the text size is not consistent between static and interactive

rendering, which is an issue

e in interactive plots, we want size to be the number of pixels, and
o in static plots, size interpretation is consistent with legacy ggplot2 interpretation of
size (could be changed for consistency with interactive rendering).

7.7 Avoid some ggplot theme options

One goal of animint is to support all of the theme options, but we have not yet had time
to implement them all. If there is a theme option that you use and animint does not yet
support, then please send us a Pull Request. The following list documents all the theme
options that animint currently supports.

o panel.margin designates the distance between panels, and is used in the space saving
facets idiom to eliminate the distance between panels.
e panel.grid.major is used to draw the the grid lines which are designated by the breaks

https://github.com/animint/animint2/issues/230
http://docs.ggplot2.org/current/theme.html

92 Limitations

argument to the scale.

e panel.grid.minor is used to draw the grid lines between the major grid lines.

e panel.background is used for the <rect> in background of each panel.

o panel.border is used for the border <rect> of each panel (on top of the background
<rect>).

e legend.position="none" works for hiding all of the legends, but none of the other
legend positions are supported (the legends always appear on the right of the plot).

The following theme options can be set to element_blank to hide the axes.

o axis.title, axis.title.x, axis.title.y designate the axis title.

e axis.ticks, axis.ticks.x, axis.ticks.y designate teh axis ticks.

e axis.line, axis.line.x, axis.line.y designate the axis line.

e axis.text, axis.text.x, axis.text.y designate the axis tick label text, and support
the angle and hjust arguments of element_text.

7.8 Facets with multiple variables per axis

Animint supports facet_grid for creating multi-panel data visualizations, but only has
limited support for multiple variables per axis. For example the ggplot below uses two
variables to create vertical facets, which results in two strip labels when rendered with

ggplot2.

data(intreg)
signals.df <- transform(
intreg$signals,
person=sub("[.].*x", "p", signal),
chromosome=sub(".*[.]", "c", signal))
two.strips <- ggplot()+
theme_animint (height=600)+
facet_grid(person + chromosome ~ ., scales="free")+
geom_point (aes(base/1e6, logratio), data=signals.df)
two.strips+ggtitle("two strip labels on the right")

Facets

L
o000
ohriO

I
PNRRO0 0000

logratio

OOUIOUIO O A~ O M
]

0.5-

with multiple variables per axis
two strip labels on the right
j s ':.o 0 0% %" g% o =
Sl FRVAAERN.
.Q
G WSS bonc i Q:MM\M.&.
12 .

..p.a?'a"‘.‘ W”J“W'W‘.‘

PP PR SO

s “’\.ﬂ.wi)
d’asmw&..&. :‘...’“‘

° o
Kol o e SX 0 ed
& LBV e IS
o9 Sogo.
: o h.a}O Vo Ro® L " ~.'...:.°...r Boop s “*‘.
° & o W3 "

a8 N
A D R Y e ALY
50 : :

0 100 150 200
base/l1e+06

In contrast, animint renders the same ggplot below using only one strip label.

animint (two.strips+ggtitle("only one strip label"))

250

dot
69

dy dy dt drt drt
20 80 20

(%)

dy
GO

93

19

94 Limitations

Dﬂl‘y’ one slnp label

0.0 -

0.2 4 \r '..' '}J 5 é
-0.4- l.- : ﬂ "ﬁﬂt S
-0.6 1 * =

S L] i

0.4 1% - - _
0.0- 1#.: "-?_E:"_ N S
044 o e) LS
-0.8 -

D.'j: ., ,"-

0.5- ..rm":’ﬂr -
-1.0- 1: =
‘1.5_ ca

logratio
=
on
8
o i

0.0 et * o%0N LD]
LY e
007 by
i . ° full R
0.0 mpowd,, SAoweiy] :
0.5 p ot g
0.25 3 ‘-,
000{ . . Mty
-0.25+ L 1-“'\-‘" . -
050 8405 8
0754 ¥ e L™
0.4 -
0.2- ;'_ e i 5
0.0 '*.*'-*' & fw& -
-0.2 5 T | - 4II| * T T 1
0 50 100 150 200 250
base/le+06

It would be nice to support multiple strip labels per axis, but we have not yet had time to
implement it. If you would like to implement this feature, we would be happy to accept your

Interactive definition of aesthetic mappings using shiny 95

Pull Request.

7.9 Interactive definition of aesthetic mappings using shiny

Normally, aesthetic mappings are defined once in R code, and can not be changed after
rendering an animint. One way to overcome this limitation is by defining shiny inputs that
are used as animint aesthetics, as in the following example.

shiny: :runApp(system.file(
"examples", "shiny-WorldBank", package="animint"))

7.10 Interactive computation

Another limitation is that animint can only display data that can be computed and stored
in a data table before creating the visualization. This means that animint is not appropriate
when there are more subsets of data to plot than you could ever compute. In that case, it
would be better to use shiny.

7.11 Chapter summary and exercises

We discussed limitations of the current implementation of animint2, and explained several
workarounds.

Exercises:

o Make a facetted ggplot with stat_bin that will not work with animint when the facet
variable is instead used as a showSelected variable. Compute the stat yourself for each
facet, and use stat_identity to make it work with animint.

o Make a ggplot which displays fine using facet_grid(. ~ var, scales="free") but
does not display well in animint with showSelected=var. To fix the problem, compute
a normalized version of var and use that for the showSelected variable.

Next, Chapter 8 explains how to create a multi-panel visualization of the World Bank data.

../Ch08/Ch08-WorldBank-facets.html

Part 11

Advanced examples

8
World Bank

In this chapter we will explore several data visualizations of the World Bank data set.
Chapter outline:

o We begin by loading the World Bank data set and defining some helper functions for
creating a multi-panel ggplot with several geoms.

e We then create a time series plot for life expectancy.

e« We then add a scatterplot of life expectancy versus fertility rate as a second panel.

o We then add a third panel with a time series for fertility rate.

8.1 Load data and define helper functions

First we load the WorldBank data set, and consider only the subset which has both non-
missing values for both 1ife.expectancy and fertility.rate.

library(animint2)
data(WorldBank)
WorldBank$Region <- sub(
" (all income levels)", "", WorldBank$region, fixed=TRUE)

library(data.table)
not.na <- data.table(WorldBank) [
' (is.na(life.expectancy) | is.na(fertility.rate))

]

We will also be plotting the population variable using a size legend. Before plotting, we will
make sure that none of the values are missing.

not.nalis.na(not.na$population)]

iso2c country year fertility.rate life.expectancy population

1: KW Kuwait 1992 2.338 72.95266 NA
2: KW Kuwait 1993 2.341 73.07373 NA
3: KW Kuwait 1994 2.413 73.18724 NA
GDP.per.capita.Current.USD 15.to0.25.yr.female.literacy iso3c

1: NA NA KWT
: NA NA KWT
3: NA NA KWT

region capital longitude

1: Middle East & North Africa (all income levels) Kuwait City 47.9824

99

100 World Bank

2: Middle East & North Africa (all income levels) Kuwait City 47.9824

3: Middle East & North Africa (all income levels) Kuwait City 47.9824
latitude income lending Region

1: 29.3721 High income: nonOECD Not classified Middle East & North Africa

2: 29.3721 High income: nonOECD Not classified Middle East & North Africa

3: 29.3721 High income: nonOECD Not classified Middle East & North Africa

The table above shows that there are three rows with missing values for the population
variable. They are for the country Kuwait during 1992-1994. The table below shows the
data from the neighboring years, 1991-1995.

not.nal
country == "Kuwait" & 1991 <= year & year <= 1995,

. (country, year, population)]

country year population

1: Kuwait 1991 1999651
2: Kuwait 1992 NA
3: Kuwait 1993 NA
4: Kuwait 1994 NA
5:

Kuwait 1995 1586123

The table above shows that the population of Kuwait decreased over the period 1991-1995,
consistent with the Gulf War of that time period. We fill in those missing values below.

not.nalis.na(population), population := 1700000]
not.nal
country == "Kuwait" & 1991 <= year & year <= 1995,
. (country, year, population)]

country year population
Kuwait 1991 1999651
Kuwait 1992 1700000
Kuwait 1993 1700000
Kuwait 1994 1700000
Kuwait 1995 1586123

O W

Next, we define the following helper function, which will be used to add columns to data
sets in order to assign geoms to facets.

FACETS <- function(df, top, side)data.frame(

af,
top=factor(top, c("Fertility rate", "Years")),
side=factor(side, c("Years", "Life expectancy")))

Note that the factor levels will specify the order of the facets in the ggplot. This is an
example of the addColumn then facet idiom. Below, we define three more helper functions,
one for each facet.

First time series plot 101

TS.LIFE <- function(df)FACETS(df, "Years", "Life expectancy")
SCATTER <- function(df)FACETS(df, "Fertility rate", "Life expectancy")
TS.FERT <- function(df)FACETS(df, "Fertility rate", "Years")

8.2 First time series plot

First we define a data set with one row for each year, which we will use for selecting years
using a geom_tallrect in the background.

years <- unique(mot.nal, .(year)])

We define the ggplot with a geom_tallrect in the background, and a geom_line for the
time series.

line_alpha <- 3/5
line_size <- 4
ts.right <- ggplot()+
geom_tallrect (aes(
xmin=year-1/2, xmax=year+1/2),
clickSelects="year",
data=TS.LIFE(years), alpha=1/2)+
geom_line (aes(
year, life.expectancy, group=country, color=Region),
clickSelects="country",
data=TS.LIFE(not.na), size=line_size, alpha=line_alpha)
ts.right

102 World Bank

80-

Region

| East Asia & Pacific

[Europe & Central Asia

[Latin America & Caribbean
[Middle East & North Africa
[North America

[South Asia

[Sub-Saharan Africa

D
o
'

life.expectancy

40-

1960 1970 1980 1990 2000 2010

year

Note that we specified clickSelects=year so that clicking a tallrect will change the selected
year, and clickSelects=country so that clicking a line will select or de-select a country.
Also note that we used TS.LIFE to specify columns that we will use in the facet specification
(next section).

8.3 Add a scatterplot facet
We begin by simply adding facets to the previous time series plot.

ts.facet <- ts.right+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(side ~ top, scales="free")+
xlab("")+
ylab("")

ts.facet

Add a scatterplot facet 103

Years

80+

Region

[East Asia & Pacific

""" |Europe & Central Asia

77| Latin America & Caribbean
[Middle East & North Africa
[|North America

" South Asia

[Sub-Saharan Africa

60+

Aoueroadxa aji

40+

1960 1970 1980 1990 2000 2010

We set the panel.margin to 0, which is often a good idea to save space in a ggplot with
facets. We use scales="free" and hide the axis labels, in an example of the addColumn
then facet idiom. Instead, we use the facet label to show the variable encoded on each axis.
Below, we add a scatterplot facet with a point for each year and country.

ts.scatter <- ts.facet+
theme_animint (width=600)+
geom_point (aes(
fertility.rate, life.expectancy,
color=Region, size=population,
key=country), # key aesthetic for animated transitions!
clickSelects="country",
showSelected="year",
data=SCATTER (not.na))+
scale_size_animint(pixel.range=c(2, 20), breaks=10"(9:5))
ts.scatter

104 World Bank

Fertility rate Years

o population

807 1e+09
1le+08
1le+07
le+06

60 - 1e+05

Region

¢ East Asia & Pacific
@ Europe & Central Asia
@7 Latin America & Caribbean
@7 Middle East & North Africa
[North America

@ South Asia

& Sub-Saharan Africa

Aoueroadxa aji

40+

)

2.5 5.0 75 1960 1970 1980 1990 2000 2010

Note how we use scale_size_animint to specify the range of sizes in pixels, and the breaks
in the legend. Also note that we use SCATTER to specify top and side columns which are
used in the facet specification. We also render this ggplot interactively below.

animint (ts.scatter)

Fertility rate
80 - population
® 00
® ® 1e+08
~ A
L L ® 1a+07
(. =
™ @y ., = * 1et06
4 - m
60 -) e [> © * 1e+05
s & B .
.:,_' K é Region
.) .
"“ East Asia & Pacific
el =

“* Europe & Central Asia
“*= Latin America & Caribbean

V.. <=~ Middle East & North Africa
s == North America
= South Asia
| | | | | | | | = Sub-Saharan Africa
25 5.0 75 1960 1970 1980 1990 2000 2010

Note that single selection is used by default for both year and country.

e The selected year is shown as a grey rectangle on the right.
e The selected country is shown with more opacity in the geom_point on the left, and in
the geom_line on the right.

Exercise: how would you further emphasize the selected year and country? Hint: you can
modify the alpha_off parameter from the default of 0.5 to a smaller value, like 0.2. Try

Adding another time series facet

105

using color_off, which can not be used in combination with aes(color), so try using

aes(fill) instead in the geom_point.

8.4 Adding another time series facet

Below we add widerects for selecting years, and paths for showing fertility rate.

scatter.both <- ts.scatter+
geom_widerect (aes(
ymin=year-1/2, ymax=year+1/2),
clickSelects="year",
data=TS.FERT (years), alpha=1/2)+
geom_path (aes(
fertility.rate, year, group=country, color=Region),
clickSelects="country",
data=TS.FERT(not.na), size=line_size, alpha=line_alpha)
scatter.both

Fertility rate Years

2010 population

2000 .
1le+09
1990
o
°
[
[]

SIeap

1le+08
le+07
le+06
le+05

1980
1970

1960

Region

8 North America
[South Asia

Aaueroadxa a)i

25 50 7.5 19601970 1980 1990 2000 2010

[East Asia & Pacific

[Europe & Central Asia

[0 Latin America & Caribbean
8 Middle East & North Africa

[Sub-Saharan Africa

Note in the code above that TS.FERT was used to specify facet columns top and side.
A final touch is to add text labels to the time series, using geom_label_aligned, which
is new in animint2 (it is not in ggplot2). It is a text label that adjusts its position to
avoid overlaps with other labels with the same y value (in horizontal alignment). The code
below first creates a data set with the extreme values of year, and then uses that with

alignment="horizontal".

106 World Bank

ext.years <- not.nalyear %in), range(year)]
scatter.labels <- scatter.both+
geom_label_aligned(aes(
fertility.rate, year,
vjust=ifelse(year==min(year), 1, 0),
color=Region,
label=country),
data=TS.FERT (ext.years),
showSelected="country",
alignment="horizontal")

Note in the code above that we set vjust

e to 1 so that the top of the label is aligned with the min year at the bottom of the panel.
e to 0 so that the bottom of the label is aligned with the max year at the top of the panel.

‘We render an interactive version below.

animint (
title="World Bank data (multiple selection, facets)",
scatter=scatter.labels+
theme_animint (width=600, height=600),
duration=list (year=1000),
time=1list(variable="year", ms=3000),
first=1list(year=1975, country=c("United States", "Canada")),
selector.types=list(country="multiple"))

Fertility rate Years

Canada | United States

SIPIX

population
@ 00

® je+08

* e+

* 1et06

¢ 1e+05

Region

*= East Asia & Pacific

** Europe & Central Asia
“*= Latin America & Caribbean
~== Middle East & North Africa
== North America
** South Asia
** Sub-Saharan Africa

ouepadyaayry

40~

25 50 75 1960 1970 1980 1990 2000 2010

Chapter summary and exercises 107

The visualization above has three facets: two time series, and one scatter plot. The fertility
rate time series shows two labels for each selected country, with a few special features:

If the values of fertility rate for selected countries are too close, then the label positions
are adjusted to avoid overlapping text.

If there are selected countries near the left/right plot boundaries, then the labels are
adjusted to avoid going outside of these boundaries.

If there are too many countries selected to display all text labels in the available space
(between left and right boundaries), then the text size is reduced until the text labels fit.
These features are used in each group of labels with the same Y value, because
alignment="horizontal" was specified.

Try selecting a few more neighboring countries to see how this works.

8.5 Chapter summary and exercises

We showed how to create a multi-layer, multi-panel (but single-plot) visualization of the
World Bank data.

Exercises:

Simplify the code by using make_x* () instead of geom_x*() for tallrect and widerect.
The X axis for fertility rate shows default breaks 2.5, 5.0, 7.5. Change these to 2, 4, 6, 8.
Hint: use breaks argument of scale_x_continuous.

Since no smooth transition has been specified for country, the text labels appear and
disappear instantaneously when the set of selected countries is modified. Try adding
a smooth transition, by adding the global duration option, and by adding aes (key)
to the geom_label_aligned. Hint: since there are two labels for each country, the key
should depend on both year and country.

Make it so that clicking a country label de-selects the corresponding country.

Add text labels to the time series plot on the right, with names for each country, using
geom_label_aligned(alignment="vertical"). Each label should appear only when
the country is selected, and should disappear after clicking on the label.

Add a text label to the scatterplot to indicate the selected year.

Add text labels to the scatterplot, with names for each country. Each label should appear
only when the country is selected, and should disappear after clicking on the label.
Add points on each time series plot, with size proportional to population, as in the
scatterplot. The points should appear only when the country is selected, and clicking
the points should de-select that country.

As in this gallery example, add world map in the Year/Year facet which is currently
empty.

Next, Chapter 9 explains how to visualize the Montreal bike data set.

https://tdhock.github.io/2025-01-WorldBank-facets-map/
../Ch09/Ch09-Montreal-bikes.html

9
Montreal bikes

In this chapter we will explore several data visualizations of the Montreal bike data set.
Chapter outline:

¢ We begin with some static data visualizations.

o We create an interactive visualization of accident frequency over time.

o We create a interactive data viz with four plots, showing monthly accident trends, daily
details, and a map of counter locations.

9.1 Static figures

We begin by loading the montreal.bikes data set, which is not available in the CRAN
release of animint2, in order to save space on CRAN. Therefore to access this data set, you
will need to install animint2 from GitHub:

tryCatch({

data(montreal.bikes, package="animint2")
}, warning=function(w){

remotes: :install_github("tdhock/animint2")
B

We begin by examining the accidents data table.

library(animint2)
data(montreal.bikes) #only present if installed from github
old.locale <- Sys.setlocale(locale="en_US.UTF-8")
for(col_name in c("nom","nom_comptage","Etat")){

montreal .bikes$counter.locations[[col_name]] <- iconv(

montreal .bikes$counter.locations[[col_name]], "latinl", "UTF-8")

}
library(data.table)
accidents.dt <- data.table(montreal.bikes$accidents)
accidents.dt[1]

date.str time.str deaths people.severely.injured people.slightly.injured

1: 2012-01-02 18:35 0 0 1
street.number street cross.street location.int position.int
1: NA ST JEAN BAPTISTE O AV ROULEAU 32 6
position location

109

110 Montreal bikes

1: Voie de circulation En intersection (moins de 5 métres)

Each accident has data about its date, time, location, and counts of death and slight /severe
injury. Some of the values are in French (e.g. position Voie de circulation, location En
intersection, etc).

We calculate the time period of the accidents below.

(accidents.dt[

, date.P0SIXct := as.POSIXct(strptime(date.str, "%Y-%m-%d"))
1L

, month.str := strftime(date.P0SIXct, "%Y-%m")

1D
date.str time.str deaths people.severely.injured
1: 2012-01-02 18:35 0 0
2: 2012-01-05 21:50 0 0
5594: 2014-12-27 12:35 0 0
5595: 2014-12-30 11:55 0 0
people.slightly.injured street.number street cross.street
1: 1 NA ST JEAN BAPTISTE O AV ROULEAU
: 1 NA FOSTER JANELLE
5594 : 1 NA CH DES PATRIOTES 1RE RUE
5595: 1 14965 PIERREFONDS BD JACQUES BIZARD
location.int position.int position
1: 32 6 Voie de circulation
34 6 Voie de circulation
5594 : 33 6 Voie de circulation
5595: 33 5 Voie cyclable / chaussée désignée
location date.POSIXct month.str
1: En intersection (moins de 5 métres) 2012-01-02 2012-01
2: Entre intersections (100 métres et +) 2012-01-05 2012-01

5594: Prés d'une intersection/carrefour giratoire 2014-12-27 2014-12
5595: Prés d'une intersection/carrefour giratoire 2014-12-30 2014-12

range (accidents.dt$month.str)

[1] "2012-01" "2014-12"

Below we also compute the range of months for the bike counter data table.

(counts.dt <- data.table(montreal.bikes$counter.counts))

location date count
1: Berri 2009-01-01 05:00:00 29
2: Berri 2009-01-02 05:00:00 19

13382: Totem_Laurier 2013-09-17 04:00:00 3745

Static figures 111

13383: Totem_Laurier 2013-09-18 04:00:00 3921

counts.dt[, month.str := strftime(date, "%Y-%m")]
range (counts.dt$month.str)

[1] "2009-01" "2013-09"

The bike counts are time series data which we visualize below.

counts.dt[, loc.lines := gsub("[- _1", "\n", location)]
ggplot O+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(loc.lines ~ .)+
geom_point (aes(
date, count, color=count==0),
shape=21,
data=counts.dt)+
scale_color_manual (values=c("TRUE"="grey", "FALSE"="black"))

Warning: Removed 407 rows containing missing values (geom_point).

30

s1ueS1ag2Is 1Iag
910D

SIEINL:

Jled
np

4

count ==
o FALSE
TRUE

count

NUN NON NON NN NON NON NON NUN NUN
T
uuo

@

ndn
1191dauuo

auoe%

001 0001 00U1 01001 01001 U001 01001 01001 010Ul
OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0

leune e
wajoL Jures

S

2009 2010 2011 2012 2013
date

Plotting with geom_point makes it easy to see the difference between zeros and missing
values.

We will compute a summary of all accidents per month in this time period, so we first create
a data table for each month below. (and make sure to set the locale to C for English month
names)

112 Montreal bikes

uniq.month.vec <- unique(c(
accidents.dt$month.str,
counts.dt$month.str))
one.day <- 60 * 60 * 24
months <- data.table(month.str=uniq.month.vec) [
, monthOl.str := pasteO(month.str, "-01")
1L
, month01.P0SIXct := as.POSIXct(strptime(monthOl.str, "%Y-%m-%d"))
1L, let(
next.POSIXct = monthO1.POSIXct + one.day * 31,
month.str = strftime(month01.P0SIXct, "%B %Y")
1L
, nextOl.str := pasteO(strftime(next.P0SIXct, "%Y-/m"), "-01")
1t
, next01.P0SIXct := as.POSIXct(strptime(nextOl.str, "%Y-%m-%d"))
]
month.levs <- months[order (monthO1.P0SIXct), month.str]
(months [, month := factor(month.str, month.levs)][])

month.str monthOl.str month01.POSIXct next.POSIXct nextOl.str

1: January 2012 2012-01-01 2012-01-01 2012-02-01 2012-02-01
2: February 2012 2012-02-01 2012-02-01 2012-03-03 2012-03-01
71: November 2011 2011-11-01 2011-11-01 2011-12-02 2011-12-01
72: December 2011 2011-12-01 2011-12-01 2012-01-01 2012-01-01
next01.P0OSIXct month
1: 2012-02-01 January 2012
2: 2012-03-01 February 2012
T1: 2011-12-01 November 2011
72: 2012-01-01 December 2011

Note that we created a month column which is a factor ordered by month.levs.

month_pos_ct <- function(mstr)as.POSIXct(
strptime(pasteO(mstr, "-15"), "%Y-%m-%d"))

accidents.dt[

, month.text := strftime(date.P0SIXct, "%B %Y")

1L
, month := factor(month.text, month.levs)
10
, month.POSIXct := month_pos_ct (month.str)
100
date.str time.str deaths people.severely.injured
1: 2012-01-02 18:35 0 0
2: 2012-01-05 21:50 0 0
5594: 2014-12-27 12:35 0 0
5595: 2014-12-30 11:55 0 0

people.slightly.injured street.number street cross.street

Static figures 113

1: 1 NA ST JEAN BAPTISTE O AV ROULEAU
: 1 NA FOSTER JANELLE
5594 : 1 NA CH DES PATRIQTES 1RE RUE
5595: 1 14965 PIERREFONDS BD JACQUES BIZARD
location.int position.int position
1: 32 6 Voie de circulation
2: 34 6 Voie de circulation
5594 : 33 6 Voie de circulation
5595: 33 5 Voie cyclable / chaussée désignée
location date.POSIXct month.str
1: En intersection (moins de 5 métres) 2012-01-02 2012-01
2: Entre intersections (100 métres et +) 2012-01-05 2012-01

5594: Prés d'une intersection/carrefour giratoire 2014-12-27 2014-12
5595: Prés d'une intersection/carrefour giratoire 2014-12-30 2014-12
month.text month month.POSIXct
1: January 2012 January 2012 2012-01-15
2: January 2012 January 2012 2012-01-15
5594 : December 2014 December 2014 2014-12-15
5595: December 2014 December 2014 2014-12-15

stopifnot(!is.na(accidents.dt$month.POSIXct))
accidents.per.month <- accidents.dt[, list(
total.accidents=.N,
total.people=sum(
deaths+people.severely.injured+people.slightly.injured),
deaths=sum(deaths),
people.severely.injured=sum(people.severely.injured),
people.slightly.injured=sum(people.slightly.injured),
next.POSIXct = month.POSIXct + one.day * 30,
monthO1l.str = pasteO(strftime(month.P0SIXct, "%Y-%m"), "-01")
), by=.(month, month.str, month.text, month.POSIXct)][, let(
month01.P0SIXct = as.POSIXct(strptime(monthOl.str, "%Y-%m-%d")),
next0l.str = pasteO(strftime(next.POSIXct, "%Y-%m"), "-01")
)1L
, next01.POSIXct := as.POSIXct(strptime(nextOl.str, "JY-Ym-%d"))
11

We plot the accidents per month below.

accidents.tall <- melt(
accidents.per.month,
measure.vars=c(
"deaths", "people.severely.injured", "people.slightly.injured"),
variable.name="severity",
value.name="people")
severity.colors <- c(

114 Montreal bikes

deaths="#A50F15" ,#dark red
people.severely.injured="#FB6A4A",
people.slightly.injured="#FEEOD2")#lite red
ggplot)+
theme_bw()+
geom_bar (aes (
month.POSIXct, people, fill=severity),
stat="identity",
data=accidents.tall)+
scale_fill_manual (values=severity.colors)

400 -
3001
severity
%_ 200 . deaths
8 . people.severely.injured
Q . .
people.slightly.injured
100+
0- | _--.lll.—_ __-I.III.-_ _-..I.I-_

2012 2013 2014 2015
month.POSIXct

In each accident, there are counts of people who died, along with people who suffered severe
and slight injuries. Below we classify the severity of each accident according to the worst
outcome among the people affected.

accidents.dt[
, severity.str := fcase(
0 < deaths, "deaths",
0 < people.severely.injured, "people.severely.injured",
default="people.slightly.injured")
1L
, severity := factor(severity.str, names(severity.colors))
1L
, table(severity)

]

severity
deaths people.severely.injured people.slightly.injured

Static figures 115

44 289 5262

The output above shows that accidents with only slight injuries are most frequent, and
accidents with at least one death are least frequent. Below we compute counts per month.

counts.per.month <- counts.dt[, let(
month.POSIXct = month_pos_ct(month.str),
month.text = strftime(date, "%B %Y"),
day.of .the.month = as.integer(strftime(date, "%d"))
)1L
, month := factor(month.text, month.levs)
1L, 1list(
days=.N,
mean.per.day=mean(count) ,
count=sum(count),
monthO1.str = pasteO(month.str, "-01")
), by=.(location, month, month.str, month.P0SIXct)][

0 < count
1L
, month01.P0SIXct := as.POSIXct(strptime(monthOl.str, "%Y-%m-%d"))
1L
, next.POSIXct := monthO1.POSIXct + one.day * 31
1L
, nextOl.str := pasteO(strftime(next.POSIXct, "%Y-/m"), "-01")
1L
, next01.P0SIXct := as.PO0SIXct(strptime(nextOl.str, "%Y-Ym-%d"))
1L

, days.in.month := as.integer(round(difftime(next01.POSIXct,month01.POSIXct,units="days")))
111
counts.per.month[days < days.in.month, {

list(location, month, days, days.in.month)

H
location month days days.in.month
1: Berri November 2012 5 30
2: Coéte-Sainte-Catherine November 2012 5 30
14: Rachel September 2013 18 30
15: Totem_Laurier September 2013 18 30

As shown above, some months do not have observations for all days.

116 Montreal bikes

9.2 Interactive viz of accident frequency

complete.months <- counts.per.month[days == days.in.month]
month.labels <- counts.per.month[, {
.SD[which.max(count), 1
}, by=location]
day.labels <- counts.dt[, {
.SD[which.max(count),]
}, by=.(location, month)]
city.wide.cyclists <- counts.per.month[0 < count, list(
locations=.N,
count=sum(count),
monthO1.str = pasteO(month.str, "-01")
), by=.(month, month.str, month.P0SIXct)][
, month01.P0SIXct := as.POSIXct(strptime(monthOl.str, "%Y-%m-%d"))
1L
, next.POSIXct := month01.POSIXct + one.day * 31
1L
, nextOl.str := pasteO(strftime(next.P0SIXct, "%Y-/m"), "-01")
1L
, next01.POSIXct := as.POSIXct(strptime(nextOl.str, "JY-Ym-%d"))
111
month.str.vec <- strftime(seq(
strptime("2012-01-15", "%Y-%m-%d"),
strptime("2013-01-15", "%Y-%m-%d"),
by="month"), "%Y-%m")
city.wide.complete <- complete.months[0 < count, list(
locations=.N,
count=sum(count),
monthO1.str = pasteO(month.str, "-01")
), by=.(month, month.str, month.POSIXct)]
setkey(city.wide.complete, month.str)
scatter.cyclists <- city.wide.complete[month.str.vec]
scatter.accidents <- accidents.per.month[
scatter.cyclists, on=.(month.str)]
scatter.not.na <- scatter.accidents[!is.na(locations),]
scatter.max <- scatter.not.na[locations==max(locations)]
fit <- 1lm(total.accidents ~ count - 1, scatter.max)
scatter.max [, pred.accidents := predict(fit)]
animint (
regression=ggplot ()+
theme _bw()+
ggtitle("Numbers of accidents and cyclists")+
geom_line (aes(
count, pred.accidents),
color="grey",
data=scatter.max)+

Interactive viz with map and details 117

geom_point (aes(
count, total.accidents),
shape=1,
clickSelects="month",
size=b,
alpha=0.75,
data=scatter.max)+
ylab("Total bike accidents (all Montreal locations)")+
xlab("Total cyclists (all Montreal locations)"),
timeSeries=ggplot () +
theme_bw()+
ggtitle("Time series of accident frequency")+
x1lab("Month")+
geom_point (aes(
month.P0SIXct, total.accidents/count),
clickSelects="month",
size=5,
alpha=0.75,
data=scatter.max))

400 ‘Numbers of accidents and cyclists Time series of accident frequency
2z 7e-04-
S
5
= 300 6e-04-
g z
= g L
o
= % 5e-04-
3 200~ g
z g
E = 4e-04-
S 3
% 100- -
] 3e-04-
=
=
B ol @ 2e-04-
0e+00 20405 4e+05 6e+05 8e+05 Jan 2012 Apr2012 Jul 2012 Oct2012 Jan 201
Total cyclists (all Montreal locations) Month

The data viz above shows two data visualizations of city-wide accident frequency over time.
The plot on the left shows that the number of accidents grows with the number of cyclists.
The plot on the right shows the frequency of accidents over time.

9.3 Interactive viz with map and details

The plot below is a dotplot of accidents for each month. Each dot represents one person
who got in an accident.

118 Montreal bikes

accidents.cumsum <- accidents.dt[
order(date.POSIXct, month, severity)
1L
, accident.i := seq_along(severity)
, by=.(date.P0SIXct, month)
1L
, day.of.the.month := as.integer(strftime(date.P0SIXct, "%d"))
1101
ggplot O+
theme_bw()+
theme (panel .margin=grid: :unit(0, "cm"))+
facet_wrap("month")+
geom_text(aes(15, 25, label=month), data=accidents.per.month)+
scale_fill_manual (values=severity.colors, breaks=rev(names(severity.colors)))+
scale_x_continuous("day of the month", breaks=c(1, 10, 20, 30))+
geom_point (aes(
day.of .the.month, accident.i, fill=severity),
shape=21,
data=accidents.cumsum)

anuary 201ebruary 201March 2012 April 2012 | May 2012 June 2012

daly ddi T Z[11 £U £
Y Y sl

co@@ae oo looem o Q| @

July 2012 August 2012ptember 20)ctober 201bvember 202cember 20:

] L | cl d1DCIlIVE]

o

anuary 201€ebruary 201March 2013 April 2013 | May 2013 | June 2013

daly dary LIl £ £

severity
o ool cca oo B | oo @ o people.slightly.injured
July 2013 August 2013ptember 20Dctober 201ovember 202cember 20. -
people.severely.injured

k
i
i
%E: | I AIDCIIVCT | s
i
k

('{@ m_06 fa}
anuary 201«bruary 201March 2014 April 2014 May 2014 | June 2014

dly dal'y CIl Z[Il ZUy £ L

faWaWaYall ¢ aWol faWaYe'el Q™ e o

July 2014 August 2014ptember 20)ctober 201ovember 20=2cember 20:

] | Cl 410CI1UC]

o0 0 aof) ma

1 10 20 301 10 20 30l 10 20 301 10 20 301 10 20 3G 10 20 30
day of the month

counter.locations <- data.table(
montreal .bikes$counter.locations
Y[, let(
lon = coord X,
lat = coord_Y
)11

loc.name.code <- c(

Interactive viz with map and details

"Berril"="Berri",
"Brebeuf"="Brébeuf",
CSC="Cote-Sainte-Catherine",

"Maisonneuve_1"="Maisonneuve 1",

"Maisonneuve_2"="Maisonneuve 2",

"Parc"="du Parc",
PierDup="Pierre-Dupuy",
"Rachel/Papineau"="Rachel",
"Saint-Urbain"="Saint-Urbain",
"Totem_Laurier"="Totem_Laurier")
counter.locations[, location
velo.counts <- table(counts.dt$location)
(show.locations <- counter.locations[
names (velo.counts), on=.(location)])

id nom
1: 3 Berri_1
2: 2 Brebeuf 1
3: 8 Cote-Ste-Catherine_1
4: 4 Maisonneuve_1
5: b5 Maisonneuve_2
6: 22 Parc_1
7: 12 Pierre-Dupuy_1
8: 6 Rachel/Papineau
9: 1 St-Urbain_1
10: 37 Totem_Laurier
Annee_implante coord_X
1: 2008 -73.56284
2: 2009 -73.57398
3: 2010 -73.60783
Catherine
4: 2008 -73.56159
5: 2008 -73.57508
6: 2010 -73.58171
7: 2010 -73.54455
Dupuy
8: 2007 -73.56965
9: 2014 -73.58888
Urbain
10: 2013 -73.58883

Maisonneuve_1

119

:= loc.name.code [nom_comptage]]

nom_comptage
Berril
Brebeuf

CSC

Maisonneuve_2
Parc
PierDup
Rachel/Papineau
Saint-Urbain
Totem_Laurier

C
45

45.
45.

45
45

45.

45

45.

45

45.

oord_Y
.51613
52741
51496

.51479
.50054
51346
.49966

53036
.51955

52777

-73.
-73.
-73.

-73.
-73.
-73.
-73.

-73.
-73.

-73.

lon
56284
57398
60783

56159
57508
58171
54455

56965
58888

58883

Etat
Existant
Existant
Existant

A réinstaller

Existant
Existant
Existant
Existant
Existant
Existant
lat
45.51613
45.52741

Type
compteur
compteur
compteur
compteur
compteur
compteur
compteur
compteur
compteur
totem

location

Berri

Brébeuf

45.51496 Cote-Sainte-

45.51479
45.50054
45.51346
45.49966

45.53036
45.51955

45.52777

Maisonneuve 1

Maisonneuve 2
du Parc

Pierre-

Rachel
Saint-

Totem_Laurier

The counter locations above will be plotted below. Note that we use showSelected=month
and clickSelects=location.

map.lim <- show.locations[, list(
range.lat=range(lat),
range.lon=range(lon)

)]

diff.vec <- sapply(map.lim, diff)
diff.mat <- c(-1, 1) * matrix(diff.vec, 2, 2, byrow=TRUE)

120 Montreal bikes

scale.mat <- as.matrix(map.lim) + diff.mat
location.colors <-
c("#8DD3C7", "#FFFFB3", "#BEBADA", "#FB8072", "#80B1D3", "#FDB462",
"#B3DE69", "#FCCDE5", "#D9D9OD9", "#BC80BD", "#CCEBC5", "#FFED6F")
names (location.colors) <- show.locations$location
counts.per.month.loc <- counts.per.month[
show.locations, on=.(location)]
bike.paths <- data.table(montreal.bikes$path.locations)
some.paths <- bike.paths[
scale.mat[1, "range.lat"] < lat &
scale.mat[1, "range.lon"] < lon &
lat < scale.mat[2, "range.lat"] &
lon < scale.mat[2, "range.lon"]]
mtl.map <- ggplot()+
theme_bw()+
theme (
panel.margin=grid::unit(0, "lines"),
axis.line=element_blank(), axis.text=element_blank(),
axis.ticks=element_blank(), axis.title=element_blank(),
panel.background = element_blank(),
panel.border = element_blank())+
coord_equal (xlim=map.lim$range.lon, ylim=map.lim$range.lat)+
scale_color_manual (values=location.colors)+
scale_x_continuous(limits=scale.mat[, "range.lon"])+
scale_y_continuous(limits=scale.mat[, "range.lat"])+
geom_path (aes(
lon, lat,
tooltip=TYPE_VOIE,
group=paste(feature.i, path.i)),
color="grey",
data=some.paths)+
guides(color="none")+
geom_text (aes(
lon, lat,
label=location),
clickSelects="location",
data=show.locations)
mtl.map

Interactive viz with map and details 121

Totem_Laug baé(l;J el

Saint=Urbain _
ite—Cathering, paré\/lais%ﬁﬁéuve 1

Maisonneuve 2 Pierre—L

The plot below shows the time period that each counter was in operation. Note that we use
geom_tallrect with clickSelects to select the month.

location.ranges <- counts.per.month[0 < count, list(
min=min(month.P0SIXct),
max=max (month.P0SIXct)
), by=location]
accidents.range <- accidents.dt[, data.table(
location="accidents",
min=min(date.P0SIXct),
max=max (date.P0SIXct))]
MonthSummary <- ggplot()+
theme bw()+
theme_animint (width=450, height=250)+
xlab("range of dates in data")+
ylab("data type")+
scale_color_manual (values=location.colors)+
guides(color="none")+
geom_segment (aes (
min, location,
xend=max, yend=location,
color=location),
clickSelects="location",
data=location.ranges, alpha=3/4, size=10)+
geom_segment (aes(
min, location,
xend=max, yend=location),
color=severity.colors[["deaths"]],
data=accidents.range,
size=10)
MonthSummary

122

Montreal bikes

Totem_Laurier -
Saint-Urbain -
Rachel-
Pierre-Dupuy -
Maisonneuve 2 -

Maisonneuve 1+

data type

du Parc

Cote—Sainte—Catherine

Brébeuf-

Berri-

2010 2012
range of dates in data

The plot below shows the bike counts at each location and day.

(dates <- counts.dt[, list(
min.date = date-one.day/2,
max.date = date+one.day/2,
locations=sum(!is.na(count))

), by=list(date)] [0 < locations])

2014

date min.date max.date locations

1: 2009-01-01 05:00:00 2008-12-31 17:00:00 2009-01-01 17:00:00 9

2: 2009-01-02 05:00:00 2009-01-01 17:00:00 2009-01-02 17:00:00 9
1607: 2013-09-17 04:00:00 2013-09-16 16:00:00 2013-09-17 16:00:00 8
1608: 2013-09-18 04:00:00 2013-09-17 16:00:00 2013-09-18 16:00:00 8

location.labels <- counts.dt[
, -SD[which.max(count)]
, by=list(location)]
TimeSeries <- ggplot()+
theme_bw()+
geom_tallrect(aes(
xmin=date-one.day/2, xmax=datetone.day/2,
clickSelects=date),
data=dates, alpha=1/2)+

geom_line (aes(
date, count, group=location,
showSelected=location,
clickSelects=location),

Interactive viz with map and details

data=counts.dt)+

scale_color_manual (values=location.colors)+

geom_point (aes(
date, count, color=location,
showSelected=location,
clickSelects=location),
data=counts.dt)+

geom_text (aes(
date, count+200, color=location, label=location,
showSelected=location,
clickSelects=location),
data=location.labels)

TimeSeries

123

Warning: Removed 407 rows containing missing values (geom_point).

Brébeuf

75004

‘€ 5000 -
=}
o
(8]

25001

0_

2009 2010 2011 2012 2013

date

The plot below shows the same data but for each month.

MonthSeries <- ggplot()+
guides(color="none", fill="none")+
theme_bw()+
geom_tallrect (aes(
xmin=month01.P0SIXct, xmax=next01.P0SIXct),
clickSelects="month",
data=months,
alpha=1/2)+
geom_line (aes(
month.POSIXct, count, group=location,

Berri

Brébeuf

Cote—Sainte—Catherine
a Maisonneuve 1
a Maisonneuve 2

du Parc

Pierre-Dupuy

Rachel

Saint-Urbain

a Totem_Laurier

124

bike counts per month

color=location),
showSelected="location",
clickSelects="location",
data=counts.per.month)+
scale_color_manual (values=location.colors)+
scale_fill _manual(values=location.colors)+
xlab("month")+
ylab("bike counts per month")+
geom_point (aes(
month.POSIXct, count, fill=location,
tooltip=paste(
count, "bikers counted at",
location, "in", month)),
showSelected="location",
clickSelects="location",
size=b,
color="black",
data=counts.per.month)+
geom_text (aes(

Montreal bikes

month.P0SIXct, count+5000, color=location, label=location),

showSelected="1location",

clickSelects="location",

data=month.labels)
MonthSeries

200000~

150000 -

"

100000

Sai%t

>

A

[

50000 -

|

]

I \

i)
I

\ il

2010 2012

month

counter.title <- "mean cyclists/day"
accidents.title <- "city-wide accidents"

Ilie

e e g
ORGPl SHHEHR

] I ' W ,
!l

b 1111|114

”

2014

person_people <- function(num, suffix)ifelse(

Interactive viz with map and details 125

num==0,
sprintf (
"%d %s hs",
num,
ifelse(num==1, "person", "people"),
suffix))
deaths_severe_slight <- function(deaths, severe, slight)apply(cbind(
ifelse(
deaths==0, "",
sprintf (
"%d deathls",
deaths,
ifelse(deaths==1, "", "s"))),
person_people(severe, "severely injured"),
person_people(slight, "slightly injured")),
1, function(x)paste(x[x!=""], collapse=", "))
MonthFacet <- ggplot()+
ggtitle("All data, select month")+
guides(color="none", fill="none")+
theme _bw()+
facet_grid(facet ~ ., scales="free")+
theme (panel .margin=grid: :unit(0, "lines"))+
geom_tallrect (aes(
xmin=month01.P0SIXct, xmax=next01.P0SIXct),
clickSelects="month",
data=data.table(
city.wide.cyclists,
facet=counter.title),
alpha=1/2)+
geom_line (aes(
month.POSIXct, mean.per.day, group=location,
color=location),
showSelected="location",
clickSelects="location",
data=data.table(counts.per.month, facet=counter.title))+
scale_color_manual (values=location.colors)+
xlab("month")+
ylab("")+
geom_point (aes(
month.POSIXct, mean.per.day, color=location,
tooltip=paste(
count, "cyclists counted at",
location, "in",
days, "days of", month,
sprintf (" (mean %d cyclists/day)", as.integer (mean.per.day)))),
showSelected="location",
clickSelects="location",
size=b,
fill="grey",

nn
>

126 Montreal bikes

data=data.table(counts.per.month, facet=counter.title))+
geom_text (aes(
month.POSIXct, mean.per.day+300, color=location, label=location),
showSelected="location",
clickSelects="location",
data=data.table(month.labels, facet=counter.title))+
scale_fill_manual(values=severity.colors)+
geom_bar (aes(
month.POSIXct, people,
fill=severity),
showSelected="severity",
stat="identity",
position="identity",
color=NA,
data=data.table(accidents.tall, facet=accidents.title))+
geom_tallrect(aes(
xmin=monthO01.P0OSIXct, xmax=next01l.P0SIXct,
tooltip=paste(
deaths_severe_slight(
deaths,
people.severely.injured,
people.slightly.injured),
"in", month)),
clickSelects="month",
alpha=0.5,
data=data.table(accidents.per.month, facet=accidents.title))
MonthFacet

All data, select month

300+

200+

sluapiode apim-A1o

Aep/sisioAo ueaw

Interactive viz with map and details 127

(days.dt <- data.table(
day.POSIXct=with(months, seq(
min(month01.P0SIXct),
max (next01.POSIXct),

by= " day"))
) [
, day.of.the.week := strftime(day.P0SIXct, "%a"
10
day.POSIXct day.of.the.week
1: 2009-01-01 Thu
2: 2009-01-02 Fri
2191: 2014-12-31 Wed
2192: 2015-01-01 Thu

The following only works in locales with English days of the week.
(weekend.dt <- days.dt[
day.of .the.week %in% c("Sat", "Sun")
10, let(
month.text = strftime(day.P0SIXct, "%B %Y"),
day.of .the.month = as.integer(strftime(day.POSIXct, "%d"))
1L

, month := factor(month.text, month.levs)
1D
day.POSIXct day.of.the.week month.text day.of.the.month month
1: 2009-01-03 Sat January 2009 3 January 2009
2: 2009-01-04 Sun January 2009 4 January 2009
625: 2014-12-27 Sat December 2014 27 December 2014
626: 2014-12-28 Sun December 2014 28 December 2014

counter.title <- "cyclists per day"
DaysFacet <- ggplot()+
ggtitle("Selected month (weekends in grey)")+
theme_bw()+
theme_animint(colspan=2, last_in_row=TRUE)+
geom_tallrect (aes(
xmin=day.of.the.month-0.5, xmax=day.of.the.month+0.5,
key=paste(day.POSIXct)),
showSelected="month",
fill="grey",
color="white",
data=weekend.dt)+
guides(color="none")+
facet_grid(facet ~ ., scales="free")+
geom_line (aes(
day.of.the.month, count, group=location,

128 Montreal bikes

key=location,
color=location),
showSelected=c("location", "month"),
clickSelects="location",
chunk_vars=c("month"),
data=data.table(counts.dt, facet=counter.title))+
scale_color_manual (values=location.colors)+
ylab("")+
geom_point (aes(
day.of.the.month, count, color=location,
key=paste(day.of.the.month, location),
tooltip=paste(
count, "cyclists counted at",
location, "on'",
date)),
showSelected=c("location", "month"),
clickSelects="location",

size=b,
chunk_vars=c("month"),
fill="white",

data=data.table(counts.dt, facet=counter.title))+
scale_fill manual(
values=severity.colors,
breaks=rev(names (severity.colors)))+
geom_text (aes(
15, 23, label=month, key=1),
showSelected="month",
data=data.table(months, facet=accidents.title))+
scale_x_continuous("day of the month", breaks=c(1, 10, 20, 30))+
geom_text (aes(
day.of.the.month, count+500, color=location, label=location,
key=location),
showSelected=c("location", "month"),
clickSelects="location",
data=data.table(day.labels, facet=counter.title))+
geom_point (aes(
day.of.the.month, accident.i,
key=paste(date.str, accident.i),
tooltip=paste(
deaths_severe_slight(
deaths,
people.severely.injured,
people.slightly.injured),
"at",
ifelse(is.na(street.number), "", street.number),
street, "/", cross.street,
date.str, time.str),
fill=severity),
showSelected="month",

129

Interactive viz with map and details

=4,
chunk vars

size

c("month"),
data.table(accidents.cumsum, facet

accidents.title))

data
DaysFacet

Warning: Removed 407 rows containing missing values (geom_point).

Selected month (weekends in grey)

°
T O
e 5
2 £
£ 3
>0
=
2 3
o 0
g 9 o
28 8%
= O O QO
W o 9o T
000
city—wide accidents cyclists per day
LO
o™
LO
N
L O
i
|

25
20+
15+
10+

5

0
10000+
7500
5000
2500

day of the month

animint (

DaysFacet,

MonthFacet,

MonthSummary,

),

multiple"

list(severity=

list (month

list(

location="Berri",

selector.types

duration

2000) ,

first

month="September 2012"),

5000))

list(variable="month", ms

time=

130 Montreal bikes

- Selected month (weekends in grey)

September 2012 'Q
20~ — - =
H s E.
151 &8 o o0l BB, 5 &
BB 8 oehBn o H o
10+ : g ¢ B
5- see sEeRTeon: g
SrEEgmcEEactEecttn: = .
10008 ey
people.slightly.injured
7500~ c% & people.severely.injured
E ® deaths
5000 %’
2500- e
e
0 L | 1 1 |
1 10 20 30
day of the month
All data, select month
B
300+ =
z .
] = Totem_Laurier-
200 & Saint-Urbain
=3 Rachel -
100~ - Pierre-Dupuy -
2 = Maisonneuve 2-
0+ T SN DR | : Maisonr&euge 1-
= u Parc-
6000+ g Cote-Sainte-Catherine-
] Brébeuf-
4000- R Berri]
= accidents : —
z 2010 2012 2014
2000+ g_ .
& range of dates in data
0 L 1 1 1
2010 2012 2014
month

9.4 Chapter summary and exercises
Exercises:

e Change location to a multiple selection variable.

¢ Add a plot for the map to the data viz.

e On the map, draw a circle for each location, with size that changes based on the count
of the accidents in the currently selected month.

¢ On the MonthSummary plot, add a background rectangle that can be used to select the
month.

o Remove the MonthSummary plot and add a similar visualization as a third panel in the
MonthFacet plot.

Next, Chapter 10 explains how to visualize the K-Nearest-Neighbors machine learning model.

../Ch10/Ch10-nearest-neighbors.html

10
K-Nearest-Neighbors

In this chapter we will explore several data visualizations of the K-Nearest-Neighbors (KNN)
classifier.

Chapter outline:

e We will start with the original static data visualization, re-designed as two ggplots
rendered by animint. There is a plot of 10-fold cross-validation error, and a plot of the
predictions of the 7-Nearest-Neighbors classifier.

o We propose a re-design that allows selecting the number of neighbors used for the model
predictions.

o We propose a second re-design that allows selecting the number of folds used to compute
the cross-validation error.

10.1 Original static figure

We start by reproducing a static version of Figure 13.4 from Elements of Statistical Learning
by Hastie et al. That Figure consists of two plots:

Figure 10.1: Static KNN viz

Left: mis-classification error curves, as a function of the number of neighbors.

e geom_line and geom_point for the error curves.

e geom_linerange for error bars of the validation error curve.
e geom_hline for the Bayes error.

e x = neighbors.

e y = percent error.

e color = error type.

Right: data and decision boundaries in the two-dimensional input feature space.

e geom_point for the data points.

e geom_point for the classification predictions on the grid in the background.
o geom_path for the decision boundaries.

e geom_text for the train/test/Bayes error rates.

131

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

132 K-Nearest-Neighbors

10.1.1 Plot of mis-classification error curves

We begin by loading the data set.

if (!requireNamespace("animint2data"))
remotes: :install_github("animint/animint2data")

Loading required namespace: animint2data

data(ESL.mixture, package="animint2data")
str (ESL.mixture)

List of 8
$ x : num [1:200, 1:2] 2.5261 0.367 0.7682 0.6934 -0.0198 ...
$y : num [1:2000 000 00000O00O0 ...
$ xnew : 'matrix' num [1:6831, 1:2] -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -

1.9 -1.8 -1.7 ...
..— attr(*, "dimnames")=List of 2
..$: chr [1:6831] "1i" "2" "3" "4"
..$: chr [1:2] "x1" "x2"
$ prob : num [1:6831] 3.55e-05 3.05e-05 2.63e-05 2.27e-05 1.96e-05 ...
..— attr(*, ".Names")= chr [1:6831] "i" "2" "3" "gn |
$ marginal: num [1:6831] 6.65e-15 2.31e-14 7.62e-14 2.39e-13 7.15e-13 ...
..— attr(x, ".Names")= chr [1:6831] "1" "2" n"3" 4"

$ px1 : num [1:69] -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2 -1.9 -1.8 -1.7 ...
$ px2 : num [1:99] -2 -1.95 -1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -
1.55 ...

$ means : num [1:20, 1:2] -0.2534 0.2667 2.0965 -0.0613 2.7035 ...

We will use the following components of this data set:

o x, the input matrix of the training data set (200 observations x 2 numeric features).

o y, the output vector of the training data set (200 class labels, either 0 or 1).

o xnew, the grid of points in the input space where we will show the classifier predictions
(6831 grid points x 2 numeric features).

e prob, the true probability of class 1 at each of the grid points (6831 numeric values
between 0 and 1).

o px1, the grid of points for the first input feature (69 numeric values between -2.6 and
4.2). These will be used to compute the Bayes decision boundary using the contourLines
function.

e px2, the grid of points for the second input feature (99 numeric values between -2 and
2.9).

o means, the 20 centers of the normal distributions in the simulation model (20 centers x
2 input features).

First, we create a test set, following the example code from help(ESL.mixture). Note that
we use a data.table rather than a data.frame to store these big data, since data.table
is often faster and more memory efficient for big data sets.

library (MASS)
library(data.table)
set.seed(123)

Original static figure 133

centers <- c(
sample(1:10, 5000, replace=TRUE),
sample(11:20, 5000, replace=TRUE))
mix.test <- mvrnorm(10000, c(0,0), 0.2*xdiag(2))
test.points <- data.table(
mix.test + ESL.mixture$means[centers,],
label=factor(c(rep(0, 5000), rep(l, 5000))))
test.points

Vi V2 label

1: 2.0210959 1.3905124 0

2: 2.7488414 1.0327241 0
9999: -1.9089417 1.6135246 1
10000: 0.7678115 0.3154265 1

We then create a data table which includes all test points and grid points, which we will use
in the test argument to the knn function.

pred.grid <- data.table(ESL.mixture$xnew, label=NA)
input.cols <- c("vVi", "vV2")
names (pred.grid) [1:2] <- input.cols
test.and.grid <- rbind(
data.table(test.points, set="test"),
data.table(pred.grid, set="grid"))
test.and.grid$fold <- NA
test.and.grid

Vi V2 label set fold
1: 2.021096 1.390512 0 test NA
2: 2.748841 1.032724 0 test NA

16830: 4.100000 2.900000 <NA> grid NA
16831: 4.200000 2.900000 <NA> grid NA

We randomly assign each observation of the training data set to one of ten folds.

n.folds <- 10

set.seed(2)

mixture <- with(ESL.mixture, data.table(x, label=factor(y)))
mixture$fold <- sample(rep(l:n.folds, l=nrow(mixture)))

mixture
Vi V2 label fold
1: 2.526092968 0.3210504 0 5
2: 0.366954472 0.0314621 0 8
199: 0.008130556 2.2422639 1 4
200: -0.196246334 0.5514036 1 8

We define the following OneFold function, which divides the 200 observations into one train

134 K-Nearest-Neighbors

and one validation set. It then computes the predicted probability of the K-Nearest-Neighbors
classifier for each of the data points in all sets (train, validation, test, and grid).

OneFold <- function(validation.fold){
set <- ifelse(mixture$fold == validation.fold, "validation", "train")
fold.data <- rbind(test.and.grid, data.table(mixture, set))
fold.data$data.i <- 1:nrow(fold.data)
only.train <- subset(fold.data, set == "train")
data.by.neighbors <- list()
for(neighbors in seq(1l, 30, by=2)){
if (interactive())cat(sprintf (
"n.folds=%4d validation.fold=%d neighbors=}d\n",
n.folds, validation.fold, neighbors))
set.seed (1)
pred.label <- class::knn(# random tie-breaking.
only.train[, input.cols, with=FALSE],
fold.datal[, input.cols, with=FALSE],
only.train$label,
k=neighbors,
prob=TRUE)
prob.winning.class <- attr(pred.label, "prob")
fold.data$probability <- ifelse(
pred.label=="1", prob.winning.class, l-prob.winning.class)
fold.datal, pred.label := ifelse(0.5 < probability, "1", "0")]
fold.datal, is.error := label != pred.labell
fold.datal[, prediction := ifelse(is.error, "error", "correct")]
data.by.neighbors[[paste(neighbors)]] <-
data.table(neighbors, fold.data)
Htfor (neighbors
do.call(rbind, data.by.neighbors)
Hitfor(validation.fold

Below, we run the OneFold function in parallel using the future package. Note that
validation folds 1:10 will be used to compute the validation set error. The validation fold 0
treats all 200 observations as a train set, and will be used for visualizing the learned decision
boundaries of the K-Nearest-Neighbors classifier.

future: :plan("multisession")
data.all.folds.list <- future.apply::future_lapply(
0:n.folds, function(validation.fold){
one.fold <- OneFold(validation.fold)
data.table(validation.fold, one.fold)
o
future.seed = NULL)
data.all.folds <- do.call(rbind, data.all.folds.list)

The data table of predictions contains almost 3 million observations! When there are so many
data, visualizing all of them at once is not practical or informative. Instead of visualizing
them all at once, we will compute and plot summary statistics. In the code below we compute
the mean and standard error of the mis-classification error for each model (over the 10

Original static figure

135

validation folds). This is an example of the summarize data table idiom which is generally

useful for computing summary statistics for a single data table.

labeled.data <- data.all.folds['!is.na(label),]

error.stats <- labeled.datal, list(
error.prop=mean(is.error)

), by=.(set, validation.fold, neighbors)]

validation.error <- error.stats[set=="validation", list(

mean=mean (error.prop) ,

sd=sd (error.prop)/sqrt (.N)

), by=.(set, neighbors)]
validation.error

set neighbors mean sd
1: validation 1 0.240 0.01943651
2: validation 3 0.165 0.02362908
14: validation 27 0.195 0.02034426
15: validation 29 0.205 0.02291288

Below we construct data tables for the Bayes error (which we know is 0.21 for the mixture

example data), and the train/test error.

Bayes.error <- data.table(
set="Bayes",
validation.fold=NA,
neighbors=NA,
error.prop=0.21)

Bayes.error

set validation.fold neighbors error.

1: Bayes NA NA

other.error <- error.stats[validation.

head (other.error)

set validation.fold neighbors error.
1: test 0 1 0
2: train 0 1 0
3: test 0 3 0
4: train 0 3 0
5: test 0 5 0
6: train 0 5 0

prop
0.21

fold==0,]

prop

.2938
.0000
.2400
.1300
.2273
.1300

Below we construct a color palette from dput (RColorBrewer: :brewer.pal(Inf, "Setl")),

and linetype palettes.

set.colors <- c(
test="#377EB8", #blue
validation="#4DAF4A" ,#green

136

Bayes="#984EA3" ,#purple
train="#FF7F00")#orange

classifier.linetypes <- c(

Bayes="dashed",
KNN="so0lid")

set.linetypes <- set.colors

set.linetypes[] <- classifier.linetypes[["KNN"]]
set.linetypes["Bayes"] <- classifier.linetypes[["Bayes"]]
cbind(set.linetypes, set.colors)

set.linetypes set.colors

test "solid" "#377EB8"
validation "solid" "#4DAF4A"
Bayes "dashed" "#984EA3"
train "solid" "#FFTFO0"

K-Nearest-Neighbors

The code below reproduces the plot of the error curves from the original Figure.

library(animint?2)
errorPlotStatic <- ggplot()+

theme_bw()+
theme_animint (width=300, rowspan=1)+
geom_hline (aes(

yintercept=error.prop, color=set, 1inetype=set),

data=Bayes.error)+
scale_color_manual (

"error type", values=set.colors, breaks=names(set.colors))+

scale_linetype_manual (

"error type", values=set.linetypes, breaks=names(set.linetypes))+

ylab("Misclassification Errors")+
xlab("Number of Neighbors")+
geom_linerange (aes(
neighbors, ymin=mean-sd, ymax=mean+sd,
color=set),
data=validation.error)+
geom_line (aes(
neighbors, mean, linetype=set, color=set),
data=validation.error)+
geom_line (aes(

neighbors, error.prop, group=set, linetype=set, color=set),

data=other.error)+

geom_point (aes(
neighbors, mean, color=set),
data=validation.error)+

geom_point (aes(
neighbors, error.prop, color=set),
data=other.error)

errorPlotStatic

Original static figure 137

0.3+

[2)

5 0.2

S

] error type
s 4~ test

§ —+— validation
% —+— Bayes
@ +rai

3 rain
2 0.1

=

0.0

0 10 20 30
Number of Neighbors

10.1.2 Plot of decision boundaries in the input feature space

For the static data visualization of the feature space, we show only the model with 7
neighbors.

show.neighbors <- 7
show.data <- data.all.folds[

validation.fold==0 & neighbors==show.neighbors]
show.points <- show.data[set=="train"]

Next, we compute the Train, Test, and Bayes mis-classification error rates which we will
show in the bottom left of the feature space plot.

text.height <- 0.25
text.V1.prop <- 0
text.V2.bottom <- -2
text.Vl.error <- -2.6
(error.text <- rbind(
Bayes.error,
other.error [neighbors==show.neighbors]

) [

, V2.top := text.V2.bottom + text.height * (1:.N)
10

, V2.bottom := V2.top - text.height

1D

set validation.fold neighbors error.prop V2.top V2.bottom
1: Bayes NA NA 0.2100 -1.75 -2.00

138 K-Nearest-Neighbors

2: test 0 7 0.2261 -1.50 -1.75
3: train 0 7 0.1450 -1.25 -1.50

We define the following function which we will use to compute the decision boundaries.

getBoundaryDT <- function(prob.vec){

stopifnot (length(prob.vec) == 6831)

several.paths <- with(ESL.mixture, contourLines(
pxl, px2,
matrix(prob.vec, length(pxl), length(px2)),
levels=0.5))

contour.list <- 1list()

for(path.i in seq_along(several.paths)){
contour.list[[path.i]] <- with(several.paths[[path.i]], data.table(

path.i, Vi=x, V2=y))
}
do.call(rbind, contour.list)

}

We use this function to compute the decision boundaries for the learned 7-Nearest-Neighbors
classifier, and for the optimal Bayes classifier.

boundary.grid <- show.datal[set=="grid"] [

, label := pred.label]

pred.boundary <- getBoundaryDT (
boundary.grid$probability

) [

, classifier := "KNN"

10

(Bayes.boundary <- getBoundaryDT (
ESL.mixture$prob

) [

, classifier := "Bayes"

10D

path.i Vi V2 classifier

1: 1 -2.600000 -0.528615 Bayes

2: 1 -2.557084 -0.500000 Bayes
249: 2 3.022480 2.850000 Bayes
250: 2 3.028586 2.900000 Bayes

Below, we consider only the grid points that do not overlap the text labels.

on.text <- function(V1i, V2){

V2 <= max(error.text$V2.top) & V1 <= text.Vl.prop
}
show.grid <- boundary.grid[!on.text(V1l, V2)]

The scatterplot below reproduces the 7-Nearest-Neighbors classifier of the original Figure.

Original static figure

label.colors <- c(
"0"="#37TEB8",
"1"="#FF7F00")
scatterPlotStatic <- ggplot()+
theme_bw()+
theme (
axis.text=element_blank(),
axis.ticks=element_blank(),
axis.title=element_blank())+
ggtitle("7-Nearest Neighbors")+
scale_color_manual (values=label.colors)+
scale_linetype_manual (values=classifier.linetypes)+
geom_point (aes(
V1, V2, color=label),
size=0.2,
data=show.grid)+
geom_path(aes(
V1, V2, group=path.i, linetype=classifier),
size=1,
data=pred.boundary)+
geom_path (aes(
V1, V2, group=path.i, linetype=classifier),
color=set.colors[["Bayes"]],
size=1,
data=Bayes.boundary) +
geom_point (aes(
V1, V2, color=label),
£fil1=NA,
size=3,
shape=21,
data=show.points)+
geom_text (aes(
text.Vl.error, V2.bottom, label=paste(set, "Error:")),
data=error.text,
hjust=0)+
geom_text (aes(
text.V1.prop, V2.bottom, label=sprintf("%.3f", error.prop)),
data=error.text,
hjust=1)
scatterPlotStatic

139

140 K-Nearest-Neighbors

7-Nearest Neighbors

classifier
== Bayes
= KNN

label
©®0
o1

10.1.3 Combined plots

Finally, we combine the two ggplots and render them as an animint.

animint (errorPlotStatic, scatterPlotStatic)

0.3- 7-Nearest Neighhors
#
£ 0.2
53]
8 classifier
5 error typ -~ Bayes
= = test
7} = KNN
2 *= validation
2 0.1~ label
] = Bayes
= * train !
* 0
0.0- train Error:
1 I I) test Emmor
0 10 20 3C Bayes Error:

Number of Neighbors

This data viz does have three interactive legends, but it is static in the sense that it displays
only the model predictions for 7-Nearest Neighbors.

Select the number of neighbors using interactivity 141

10.2 Select the number of neighbors using interactivity

In this section we propose an interactive re-design which allows the user to select K, the
number of neighbors in the K-Nearest-Neighbors classifier.

Figure 10.2: Interactive KNN viz

10.2.1 Clickable error curves plot
We begin with a re-design of the error curves plot.

Note the following changes: * add a selector for the number of neighbors (geom_tallrect). *
change the Bayes decision boundary from geom_hline with a legend entry, to a geom_segment
with a text label. * add a linetype legend to distinguish error rates from the Bayes and KNN
models. * change the error bars (geom_linerange) to error bands (geom_ribbon).

The only new data that we need to define are the endpoints of the segment that we will use
to plot the Bayes decision boundary. Note that we also re-define the set “test” to emphasize
the fact that the Bayes error is the best achievable error rate for test data.

Bayes.segment <- data.table(
Bayes.error,
classifier="Bayes",
min.neighbors=1,
max.neighbors=29

[, set := "test"]

We also add an error variable to the data tables that contain the prediction error of the
K-Nearest-Neighbors models. This error variable will be used for the linetype legend.

validation.error$classifier <- "KNN"
other.error$classifier <- "KNN"

We re-define the plot of the error curves below. Note that * We use showSelected in geom_text
and geom_ribbon, so that they will be hidden when the interactive legends are clicked. *
We use clickSelects in geom_tallrect, to select the number of neighbors. Clickable geoms
should be last (top layer) so that they are not obscured by non-clickable geoms (bottom
layers).

set.colors <- c(
test="#984EA3" ,#purple
validation="#4DAF4A" ,#green
Bayes="#984EA3" ,#purple
train="black")

errorPlot <- ggplot()+

142

ggtitle("Select number of neighbors")+
theme_bw()+
theme_animint (width=300)+
geom_text (aes(
min.neighbors, error.prop,
color=set, label="Bayes"),
showSelected="classifier",
hjust=1,
data=Bayes.segment)+
geom_segment (aes (
min.neighbors, error.prop,
xend=max.neighbors, yend=error.prop,
color=set,
linetype=classifier),
showSelected="classifier",
data=Bayes.segment)+

K-Nearest-Neighbors

scale_color_manual (values=set.colors, breaks=names(set.colors))+

scale_fill manual (values=set.colors)+
guides(fill="none", linetype="none")+

scale_linetype_manual(values=classifier.linetypes)+

ylab("Misclassification Errors")+
scale_x_continuous (

"Number of Neighbors",

limits=c(-3, 30),

breaks=c(1, 10, 20, 29))+
geom_ribbon (aes (

neighbors, ymin=mean-sd, ymax=mean+sd,

fill=set),
showSelected=c("classifier", "set"),
alpha=0.5,
color="transparent",
data=validation.error)+
geom_line (aes(
neighbors, mean, color=set,
linetype=classifier),
showSelected="classifier",
data=validation.error)+
geom_line (aes(

neighbors, error.prop, group=set, color=set,

linetype=classifier),
showSelected="classifier",
data=other.error)+

geom_tallrect (aes(
xmin=neighbors-1, xmax=neighbors+1),
clickSelects="neighbors",
alpha=0.5,
data=validation.error)

errorPlot

Select the number of neighbors using interactivity 143

Select number of neighbors

0.31

2,,AYE

Lg a— test

K]

S

:f:_) validation

7 a

g 0.14 a— train
0.04

1 10 20 29
Number of Neighbors

10.2.2 Feature space plot that shows the selected number of neighbors

Next, we focus on a re-design of the feature space plot. In the previous section we considered
only the subset of data from the model with 7 neighbors. Our re-design includes the following
changes: * We use neighbors as a showSelected variable. * We add a legend to show which
training data points are mis-classified. * We use equal spaced coordinates so that visual
distance (pixels) is the same as the Euclidean distance in the feature space.

show.data <- data.all.folds[validation.fold==0]
show.points <- show.data[set=="train"]

Below, we compute the predicted decision boundaries separately for each K-Nearest-Neighbors
model.

boundary.grid <- show.datal[set=="grid"][

, label := pred.label]

show.grid <- boundary.grid[!on.text(V1, V2)]
(pred.boundary <- boundary.gridl[

, getBoundaryDT(probability), by=neighbors

1[, classifier := "KNN"][I)
neighbors path.i Vi V2 classifier
1: 1 1 -2.60000 -1.025000 KNN
2: 1 1 -2.55000 -1.000000 KNN
4491 : 29 2 2.80099 1.900000 KNN
4492: 29 2 2.80000 1.897619 KNN

Instead of showing the number of neighbors in the plot title, below we create a geom_text

144 K-Nearest-Neighbors

element that will be updated based on the number of selected neighbors.

show.text <- show.grid[, .(
Vi=mean(range(V1)),
V2=3.05

), by=neighbors]

Below we compute the position of the text in the bottom left, which we will use to display
the error rate of the selected model.

other.error[, V2.bottom := rep(
text.V2.bottom + text.height * 1:2, 1=.N)]

Below we re-define the Bayes error data without a neighbors column, so that it appears in
each showSelected subset.

Bayes.error <- data.table(
set="Bayes",
error.prop=0.21)

Finally, we re-define the ggplot, using neighbors as a showSelected variable in the point,
path, and text geoms.

scatterPlot <- ggplot()+
ggtitle("Mis-classification errors in train set")+
theme _bw()+
theme_animint (width=450, colspan=1)+
scale_x_continuous (
"Input feature 1",
breaks=seq(-2, 4))+
ylab("Input feature 2")+
scale_color_manual (values=label.colors)+
scale_linetype_manual(values=classifier.linetypes)+
geom_point (aes (
V1, V2, color=label),
showSelected="neighbors",
size=0.2,
data=show.grid)+
geom_path(aes(
V1, V2, group=path.i, linetype=classifier),
showSelected="neighbors",
size=1,
data=pred.boundary)+
geom_path(aes(
V1, V2, group=path.i, linetype=classifier),
color=set.colors[["test"]],
size=1,
data=Bayes.boundary) +
geom_point (aes(

Select the number of neighbors using interactivity 145

V1, V2, color=label,
fill=prediction),
showSelected="neighbors",
size=3,
shape=21,
data=show.points)+
scale_fill_manual (values=c(error="black", correct="transparent"))+
geom_text (aes(
text.Vl.error, text.V2.bottom, label=paste(set, "Error:")),
data=Bayes.error,
hjust=0)+
geom_text (aes(
text.V1l.prop, text.V2.bottom, label=sprintf("%.3f", error.prop)),
data=Bayes.error,
hjust=1)+
geom_text (aes(
text.Vl.error, V2.bottom, label=paste(set, "Error:")),
showSelected="neighbors",
data=other.error,
hjust=0)+
geom_text (aes(
text.V1l.prop, V2.bottom, label=sprintf("}.3f", error.prop)),
showSelected="neighbors",
data=other.error,
hjust=1)+
geom_text (aes(
Vi, V2,
label=paste0(
neighbors,
" nearest neighbor",
ifelse(neighbors==1, "", "s"),
" classifier")),
showSelected="neighbors",
data=show.text)

Before compiling the interactive data viz, we print a static ggplot with a facet for each value
of neighbors.

scatterPlot+
facet_wrap("neighbors")+
theme (panel .margin=grid: :unit(0, "lines"))

146 K-Nearest-Neighbors

Mis—classification errors in train set

classifier
= Bayes
= KNN

prediction
O |correct

@ error

S LHIU 1S G LHIL

i | i

Input feature 2

label
©0
© 1

2-101 2 3 4
Input feature 1

10.2.3 Combined interactive data viz

Finally, we combine the two plots in a single data viz with neighbors as a selector variable.

animint (
errorPlot,
scatterPlot,
first=list (neighbors=7),
time=list(variable="neighbors", ms=3000))

Select number of neighbors Mis-classification errors in train set
0.3- 34 9 nearest neighbors classifier
2 4

5 classifier
=5 1:: == Bayes
_E £ 14 — KNN
= set = ot
g et & prediction
= r: 5| -
7] 2 04 ¢ correct
= 7 validation =
2 =% train - ¢ e
= 1 label

7 tEd 1

train Error: s g
test Error: i it i
-2 BayesErron 0.210 i iiiig
I U U 1 I 1 I i 1 1
1 10 20 29 -2 -1 0 1 2 3 4
Number of Neighbors Input feature 1

Note that neighbors is used as a time variable, so animation shows the predictions of the
different models.

Select the number of cross-validation folds using interactivity 147

10.3 Select the number of cross-validation folds using interactivity

In this section we discuss a second re-design which allows the user to select the number of
folds used to compute the validation error curve.

The for loop below computes the validation error curve for several different values of n.folds.

error.by.folds <- 1list()
error.by.folds[["10"]] <- data.table(n.folds=10, validation.error)
for(n.folds in c(3, 5, 15)){
set.seed(2)
mixture <- with(ESL.mixture, data.table(x, label=factor(y)))
mixture$fold <- sample(rep(l:n.folds, l=nrow(mixture)))
only.validation.list <- future.apply::future_lapply(
1:n.folds, function(validation.fold){
one.fold <- OneFold(validation.fold)
data.table(validation.fold, one.fold[set=="validation"])
}, future.seed=NULL)
only.validation <- do.call(rbind, only.validation.list)
only.validation.error <- only.validation[, list(
error.prop=mean(is.error)
), by=.(set, validation.fold, neighbors)]
only.validation.stats <- only.validation.error[, list(
mean=mean (error.prop),
sd=sd(error.prop)/sqrt (.N)
), by=.(set, neighbors)]
error.by.folds[[paste(n.folds)]] <-
data.table(n.folds, only.validation.stats, classifier="KNN")
}

validation.error.several <- do.call(rbind, error.by.folds)
The code below computes the minimum of the error curve for each value of n.folds.

min.validation <- validation.error.several[
, .SD[which.min(mean)]
, by=n.folds]

The code below creates a new error curve plot with two facets.

facets <- function(df, facet)data.frame(df, facet=factor(
facet, c("n.folds", "Misclassification Errors")))
errorPlotNew <- ggplot()+
ggtitle("Select # of folds and neighbors")+
theme_bw()+
theme_animint (width=325)+
theme (panel .margin=grid: :unit(0, "cm"))+
facet_grid(facet ~ ., scales="free")+
geom_text (aes(

148 K-Nearest-Neighbors

min.neighbors, error.prop,

color=set, label="Bayes"),

showSelected="classifier",

hjust=1,

data=facets(Bayes.segment, "Misclassification Errors"))+
geom_segment (aes (

min.neighbors, error.prop,

xend=max.neighbors, yend=error.prop,

color=set,

linetype=classifier),

showSelected="classifier",

data=facets(Bayes.segment, "Misclassification Errors"))+
scale_color_manual (values=set.colors, breaks=names(set.colors))+
scale_fill manual (values=set.colors, breaks=names(set.colors))+
guides(fill="none", linetype="none")+
scale_linetype_manual (values=classifier.linetypes)+
ylab("")+
scale_x_continuous (

"Number of Neighbors",

limits=c(-3, 30),

breaks=c(1, 10, 20, 29))+
geom_ribbon (aes(

neighbors, ymin=mean-sd, ymax=mean+sd,

fill=set),

showSelected=c("classifier", "set", "n.folds"),

alpha=0.5,

color="transparent",

data=facets(validation.error.several, "Misclassification Errors"))+
geom_line (aes(

neighbors, mean, color=set,

linetype=classifier),

showSelected=c("classifier", "n.folds"),

data=facets(validation.error.several, "Misclassification Errors"))+
geom_line (aes(

neighbors, error.prop, group=set, color=set,

linetype=classifier),

showSelected="classifier",

data=facets(other.error, "Misclassification Errors"))+
geom_tallrect (aes(

xmin=neighbors-1, xmax=neighbors+1),

clickSelects="neighbors",

alpha=0.5,

data=validation.error)+
geom_point (aes(

neighbors, n.folds, color=set),

clickSelects="n.folds",

size=9,

data=facets(min.validation, "n.folds"))

The code below previews the new error curve plot, adding an additional facet for the

Select the number of cross-validation folds using interactivity 149

showSelected variable.
errorPlotNew+facet_grid(facet ~ n.folds, scales="free")

Select # of folds and neighbors

8 5 10 15
=
g
o
® set
‘ test
lidati
= -‘l!—va|amn
>
8)
g -‘I!—nmn
o
=
ol
S
=
m
=3
o
»

1 10 20 29 1 10 20 29 1 10 20 29 1 10 20 29
Number of Neighbors

The code below creates an interactive data viz using the new error curve plot.

animint (
errorPlotNew,
scatterPlot,
first=1ist(neighbors=7, n.folds=10))

Mis-classification errors in train set
34 7 nearest neighbors classifier

o~

&

st :

@ validation F:L'
: @ train

Number of Neighbors Input feature 1

150 K-Nearest-Neighbors

10.4 Chapter summary and exercises

We showed how to add two interactive features to a data visualization of predictions of the
K-Nearest-Neighbors model. We started with a static data visualization which only showed
predictions of the 7-Nearest-Neighbors model. Then, we created an interactive re-design
which allowed selecting K, the number of neighbors. We did another re-design which added
a facet for selecting the number of cross-validation folds.

Exercises:

o Make it so that text error rates in the bottom left of the second plot are hidden after
clicking the legend entries for Bayes, train, test. Hint: you can either use one geom_text
with showSelected=c(selectorNameColumn="selectorValueColumn") (as explained
in Chapter 14) or two geom_text, each with a different showSelected parameter.

e The probability column of the show.grid data table is the predicted probability of class
1. How would you re-design the visualization to show the predicted probability rather
than the predicted class at each grid point? The main challenge is that probability is
a numeric variable, but ggplot scales must be either continuous or discrete (not both).
You could use a continuous fill scale, but then you would have to use a different scale to
show the prediction variable.

e Add a new plot that shows the relative sizes of the train, validation, and test sets. Make
sure that the plotted size of the validation and train sets change based on the selected
value of n.folds.

e So far, the feature space plots only showed model predictions and errors for the entire
train data set (validation.fold==0). Create a re-design which includes a new plot or facet
for selecting validation.fold, and a facetted feature space plot (one facet for train set,
one facet for validation set).

Next, Chapter 11 explains how to visualize the Lasso, a machine learning model.

../Ch14/Ch14-PeakSegJoint.html
../Ch11/Ch11-lasso.html

11

Lasso

This goal of this chapter is to create an interactive data visualization that explains the Lasso,
a machine learning model for regularized linear regression.

Chapter outline:

o We begin with several static data visualizations of the lasso path.

o We then create an interactive version with a facet and plot showing subtrain/validation
error and residuals.

o Finally we re-design the interactive data visualization with simplified legends and moving
tallrects.

11.1 Static plots of the coefficient regularization path
We begin by loading the prostate cancer data set.

if (!requireNamespace("animint2data"))
remotes: :install_github("animint/animint2data")

Loading required namespace: animint2data
data(prostate, package="animint2data")

library(data.table)
print (prostate, topn=1, trunc.cols = TRUE)

lcavol 1lweight age 1bph svi lcp gleason pgg4b lpsa
1: -0.5798185 2.769459 50 -1.3862944 0 -1.386294 6 0 -
0.4307829
97: 3.4719665 3.974998 68 0.4382549 1 2.904165 7 20 5.5829322

1 variable not shown: [train]

The output above shows the first and last row of the data table. The train column indicates
a pre-defined split in the data. In this visualization, we will study the regularization path of
the Lasso, for which we need a hold-out set to learn the optimal degree of regularization. We
will use the split set name subtrain for the data used to compute linear model coefficients,
and validation for the data used for selecting the regularization parameter (by minimizing
prediction error on this set).

151

https://en.wikipedia.org/wiki/Lasso_%28statistics%29

152

prostate[

>

set

:= ifelse(train,

1[, table(set)]

set

subtrain validation

We construct subtrain inputs x and outputs y using the code below.

67

30

input.cols <- c(

"svi", "lcp", "gleason", "pgg45")
prostate.inputs <- prostatel[, ..input.cols]
is.subtrain <- prostate$set == "subtrain"

x <- as.matrix(prostate.inputs[is.subtrain])

head (x)

lcavol 1lweight age 1bph svi

[1,] -0.5798185 2.769459 50 -1.386294 0 -1
[2,] -0.9942523 3.319626 58 -1.386294 0 -1
[3,] -0.5108256 2.691243 74 -1.386294 0 -1
[4,] -1.2039728 3.282789 58 -1.386294 0 -1
[6,] 0.7514161 3.432373 62 -1.386294 0 -1
[6,] -1.0498221 3.228826 50 -1.386294 0 -1

y <- prostate[is.subtrain, lpsal

head (y)
[1] -0.4307829 -0.1625189 -0.1625189 -0.1625189 0.3715636 0.7654678

Below we fit the full path of lasso solutions using the lars package.

library(lars)

"lcavol", "lweight", "age",

Loaded lars 1.3

fit <- lars(x,y,type="lasso")

fit$lambda

"subtrain",

"1bph

"validation")

n
>

lcp gleason pgg4b

.386294
.386294
.386294
.386294
.386294
.386294

6

Do oON O

0
0
20

o O O

Lasso

[1] 7.1939462 3.7172742 2.9403866 1.7305064 1.7002813 0.4933166 0.3711651
[8] 0.0403451

The path of lambda values are not evenly spaced.

pred.nox <- predict(fit, type="coef")

beta <- scale(pred.nox$coefficients, FALSE, 1/fit$normx)

arclength <- rowSums(abs(beta))
path.list <- 1list()
for(variable in colnames(beta)){

Static plots of the coefficient regularization path 153

standardized.coef <- betal, variable]
path.list[[variable]] <- data.table::data.table(
step=seq_along(standardized.coef),
lambda=c(fit$lambda, 0),
variable,
standardized. coef,
fraction=pred.nox$fraction,
arclength)
}
path <- do.call(rbind, path.list)
variable.colors <- c(
"#E41A1C", "#37T7TEB8", "#4DAF4A", "#984EA3", "#FFTFOO", "#FFFF33",
"#A65628", "#F781BF", "#999999")
library(animint2)
gg.lambda <- ggplot()+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
scale_color_manual (values=variable.colors)+
geom_line(aes(
lambda, standardized.coef, color=variable, group=variable),

data=path)
gg.lambda
6 4
41 .
variable
— age
8 — gleason
2 — Ibph
g 2 P
] — Icavol
g —lcp
§ Iweight
? — pgy4s
01 svi
_2 4
0 2 4 6

lambda

The plot above shows the entire lasso path, the optimal weights in the L1-regularized least
squares regression problem, for every regularization parameter lambda. The path begins
at the least squares solution, lambda=0 on the left. It ends at the completely regularized
intercept-only model on the right. To see the equivalence with the ordinary least squares
solution, we add dots in the plot below.

154 Lasso

x.scaled <- with(fit, scale(x, meanx, normx))
1fit <- Im.fit(x.scaled, y)
lpoints <- data.table::data.table(
variable=colnames (x),
standardized.coef=1fit$coefficients,
arclength=sum(abs(lfit$coefficients)))
gg.lambda+
geom_point (aes(
0, standardized.coef, color=variable),
data=lpoints)

6 4
41)
variable
—e— age
[} —o g
8 gleason
S -o-Ibph
ﬁ 21 - |cavol
S
S —o=Icp
o .
8 Iweight
? ~=- pgg4s
04 P svi
_2 N
0 2 4 6
lambda

In the next plot below, we show the path as a function of L1 norm (arclength), with some
more points on an evenly spaced grid that we will use later for animation.

fraction <- sort(unique(c(
seq(0, 1, 1=21))))
pred.fraction <- predict(
fit, prostate.inputs,
type="coef", mode="fraction", s=fraction)
coef.grid.list <- list()
coef.grid.mat <- scale(pred.fraction$coefficients, FALSE, 1/fit$normx)
for(fraction.i in seq_along(fraction)){
standardized.coef <- coef.grid.mat[fraction.i,]
coef.grid.list[[fraction.i]] <- data.table::data.table(
fraction=fraction[[fraction.il],
variable=colnames(x),
standardized.coef,

Static plots of the coefficient regularization path 155

arclength=sum(abs(standardized.coef)))
}
coef.grid <- do.call(rbind, coef.grid.list)
ggplot O+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
scale_color_manual (values=variable.colors)+
geom_line (aes(
arclength, standardized.coef, color=variable, group=variable),
data=path)+
geom_point (aes(
arclength, standardized.coef, color=variable),
data=lpoints)+
geom_point (aes(
arclength, standardized.coef, color=variable),
shape=21,
£fi11=NA,
size=3,
data=coef.grid)

6 o
4 variable
-®- age
g -®- gleason
'ac; . <@ lbph
% -®- Icavol
g @~ Icp
s lweight
? -®- pgg45
01 svi
_2 4
0 5 10 15
arclength

The plot above shows that the weights at the grid points are consistent with the lines that
represent the entire path of solutions. The LARS algorithm quickly provides Lasso solutions
for as many grid points as you like. More precisely, since the LARS only computes the
change-points in the piecewise linear path, its time complexity only depends on the number
of change-points (not the number of grid points).

156 Lasso

11.2 Interactive visualization of the regularization path

In this section, we combine the lasso weight path with the subtrain/validation error plot.
First, we compute a data table with one row per model size and set.

pred.list <- predict(
fit, prostate.inputs,
mode="fraction", s=fraction)
residual .mat <- pred.list$fit - prostate$lpsa
squares.mat <- residual.mat * residual.mat
mean.error <- prostate[, data.table(
fraction,
mse=colMeans (squares.mat[.I,]),
arclength=rowSums (abs(coef.grid.mat))
), by=set]
print(mean.error, topn=2)

set fraction mse arclength

1: subtrain 0.00 1.4370365 0.0000000
2: subtrain 0.05 1.2524384 0.9182159
41: validation 0.95 0.5090004 17.4461020
42: validation 1.00 0.5212740 18.3643178

Note in the code above that we used the data table special symbol .I, which is set to the
indices corresponding to the current value of by=set, used to compute the mse for each set.
The table in the output above is used to plot the error curves below.

rect.width <- diff(mean.error$arclength[1:2])/2
addY <- function(dt, y){
data.table::data.table(dt, y.var=factor(y, c("error", "weights")))
}
tallrect.dt <- coef.grid[variable==variable[1],]
gg.path <- ggplot()+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
theme_animint (width=300, rowspan=1)+
facet_grid(y.var ~ ., scales="free")+
ylab("")+
scale_color_manual (values=variable.colors)+
geom_line (aes(
arclength, standardized.coef, color=variable, group=variable),
data=addY(path, "weights"))+
geom_line(aes(
arclength, mse, linetype=set, group=set),
data=addY (mean.error, "error"))+
geom_tallrect (aes(
xmin=arclength-rect.width,

Interactive visualization of the regularization path 157

xmax=arclength+rect.width),
clickSelects="arclength",

alpha=0.5,
data=tallrect.dt)
gg.path
1.254
variable
1.00+ — age
— gleason
0.75+ — lbph
— Icavol
0.504 — Icp
6 ~ Iweight
— pg9g4s
4 — svi
set
27 — subtrain
---- validation
0- L
_2 N
0 5 10 15
arclength

Finally, we add a plot of residuals versus actual values.

lasso.res.list <- list()
for(fraction.i in seq_along(fraction)){
lasso.res.list[[fraction.i]] <- data.table::data.table(
observation.i=1:nrow(prostate),
fraction=fraction[[fraction.il],
residual=residual .mat[, fraction.i],
response=prostate$lpsa,
arclength=sum(abs(coef.grid.mat [fraction.i,])),
set=prostate$set)
}
lasso.res <- do.call(rbind, lasso.res.list)
hline.dt <- data.table::data.table(residual=0)
gg.res <- ggplot()+
theme_bw()+
geom_hline (aes(
yintercept=residual),
data=hline.dt,
color="grey")+
geom_point (aes(

158 Lasso

response, residual, fill=set,
key=observation.i),
showSelected="arclength",

shape=21,
data=lasso.res)
gg.res
o
S o
s 8
o
2+ E 8 |
o]
: I o
<] ° °
s S 2 g
o o °
o § : ; z set
[
5 01 ! o subtrain
(7]
o ¢ ' o validation
g R l g
] o
§ l s S l
S o
: o ° .!
(<] o °
-2 ® o ' oq
° s Se
s 8
° :0
:0
(o]
0 2 4
response

Below, we combine the ggplots above in a single animint below. Clicking the first plot
changes the regularization parameter, and the residuals that are shown in the second plot.

animint (
gg.path,

gg.res,
duration=list(arclength=2000),

time=list(variable="arclength", ms=2000))

Re-design with moving tallrects 159

variable %
— age 8o

L)
gleason %

Ibph

Icavol

RIUIRE]

residual
=]
1
P

lep % set
Jweigh *, @ subtrain
weisht '% ® validation

Pagds %

sTydem
2
r
1
°

set

— subtrain '

s validation

arclength response

11.3 Re-design with moving tallrects

The re-design below has two changes. First, you may have noticed that there are two different
set legends in the previous animint (linetype=set in the first path plot, and color=set in the
second residual plot). It would be easier for the reader to decode if the set variable had just
one mapping. So in the re-design below we replace the geom_point in the second plot with
a geom_segment with linetype=set.

Second, we have replaced the single tallrect in the first plot with two tallrects. The first
tallrect has showSelected=arclength and is used to show the selected arclength using a
grey rectangle. Since we specify a duration for the arclength variable, and the same key=1
value, we will observe a smooth transition of the selected grey tallrect. The second tallrect
has clickSelects=arclength and so clicking it has the effect of changing the selected
value of arclength. We specify a another data set with more rows, and use the named
clickSelects/showSelected variables to indicate that arclength should also be used as a
showSelected variable.

tallrect.show.list <- list()
for(a in tallrect.dt$arclength){
is.selected <- tallrect.dt$arclength == a
not.selected <- tallrect.dt['is.selected]
tallrect.show.list[[paste(a)]] <- data.table::data.table(
not.selected, show.val=a, show.var="arclength")
is
tallrect.show <- do.call(rbind, tallrect.show.list)
animint (
path=ggplot)+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(y.var ~ ., scales="free")+
ylab("")+
scale_color_manual (values=variable.colors)+

160

geom_line (aes(

arclength, standardized.coef, color=variable,

data=addY(path, "weights"))+
geom_line(aes(

arclength, mse, linetype=set, group=set),

data=addY(mean.error, "error"))+
geom_tallrect(aes(
xmin=arclength-rect.width,
xmax=arclength+rect.width,
key=1),
showSelected="arclength",
alpha=0.5,
data=tallrect.dt)+
geom_tallrect(aes(
xmin=arclength-rect.width,
xmax=arclength+rect.width,
key=paste(arclength, show.val)),
clickSelects="arclength",

showSelected=c("show.var"="show.val"),

alpha=0.5,
data=tallrect.show),

res=ggplot)+

theme_bw()+
geom_hline(aes(
yintercept=residual),
data=hline.dt,
color="grey")+
guides(linetype="none")+
geom_point (aes(
response, residual,
key=observation.i),
showSelected=c("set", "arclength"),
shape=21,
£fill=NA,
color="black",
data=lasso.res)+

geom_text (aes(

Lasso

group=variable),

3, 2.5, label=sprintf ("Ll arclength = %.1f", arclength),

key=1),

size=15,
showSelected="arclength",
data=tallrect.dt)+

geom_text (aes(
0, ifelse(set=="subtrain", -2, -2.5),
label=sprintf ("%s error = 7%.3f", set, mse),

key=1),
size=15,
showSelected=c("set", "arclength"),
hjust=0,

Chapter summary and exercises 161

data=mean.error [set=="subtrain"])+
geom_segment (aes (
response, residual,
xend=response, yend=0,
linetype=set,
key=observation.i),
showSelected=c("set", "arclength"),
size=1,
data=lasso.res),
duration=list (arclength=2000),
time=list(variable="arclength", ms=2000))

L1 arclength = 0.9
24
1] 3
5 variable 2
=1
- age H
gleason :
bph g i
3 04 el T
Icavol E qm
o E o
Iweight
E e
E svi 2 subtrain error = 1.252
1 2] H H
set 1
= subtrain b
: ! ! — validation ! ! :
0 5 10 15 0 2 4
arclength response

11.4 Chapter summary and exercises

We created a visualization of the Lasso machine learning model, which simulataneously
shows the regularization path and error curves. Interactivity was used to show details for
different values of the regularization parameter.

Exercises:

e Re-make this data viz, including the same visual effect for the tall-
rects, using only one geom_tallrect. Hint: create another data set with
expand.grid(arclength.click=arclength, arclength.show=arclength), as
in the definition of the make_tallrect_or_widerect function.

e Add another scatterplot that shows predicted values versus response, with a geom_abline
in the background to indicate perfect prediction.

e How would the error curves look if other train/validation splits were chosen? Perform
4-fold cross-validation and add a plot that can be used to select test fold.

Next, Chapter 12 explains how to visualize the Support Vector Machine.

../Ch12/Ch12-SVM.html

12

Support Vector Machines

This goal of this chapter is to create an interactive data visualization that explains the
Support Vector Machine, a machine learning model for binary classification.

Chapter summary:

e We begin by simulating some data for binary classification in two dimensions, and making
some static plots.

e In the second section, we make an interactive data visualization to show how the
linear Support Vector Machine decision boundary changes as a function of the cost
hyper-parameter.

e In the last section, we make an interactive data visualization to show how the decision
boundary of the polynomial kernel Support Vector Machine changes as a function of the
two hyper-parameters (cost and degree).

12.1 Generate and plot some data

We begin by generating two input features, x1 and x2.

library(data.table)

N <- 50

set.seed (1)

getInput <- function(){

c (#rnorm(N, sd=0.3),

runif (N, -1, 1),
runif (N, -1, 1)
)

}
data.dt <- data.table(
x1=getInput (),
x2=getInput())
library(animint?2)
ggplot O+
geom_point (aes(
x1, x2),
data=data.dt)

163

https://en.wikipedia.org/wiki/Support_vector_machine

164 Support Vector Machines

1.0- . ° LY
. ° o o .
. ° .
O L] * ® A []
(] []
_. [] []
0.5 o J ° . [} o ° o
[)
S Y . . 0
.) ° oo ®e
° * © o
% 00- * o ° . % °
. [] o []
[]
N <
° ° °
9 ° ° - .
-0.5- : o° ° : *
o ©® > L]
° 'Y ° (] L]
[]
[]
L] ° ° o
° [) [)
[]
-1.0- °
-1.0 -0.5 0.0 05 1.0
x1

The plot below shows the same data, after computing two additional input features (the
squares of the original two inputs).

data.dt[, let(
xl.8q = x17°2,
x272)1[]

x2.8q

x1 x2 xl.sq x2.8q
1: -0.4689827 0.3094479 0.21994475 0.09575798
2: -0.25657522 -0.2936055 0.06540919 0.08620416

99: 0.6217405 -0.3640726 0.38656123 0.13254888
100: 0.2098666 0.5657027 0.04404398 0.32001952

ggplot)+
geom_point (aes(
xl.sq, x2.s8q),
data=data.dt)

Generate and plot some data 165

1.00-
[]) ° =
[]
L]
[]
0.75- °®
o ©® L] °
. o0 ° ° .
[] Y .
[] ¢ ®
3 0.50- . .
&) °
[) ° []
Y []
(R ° .
o o o ¢
025- o o
[]
.: © ° e © O o°*
° S e o .
o L o O e o © .
o L Y ° e o o®
0.00- % o® eeee ° A (14 . . .
0.00 0.25 0.50 0.75 1.00

x1.sq

In our simulation, we assume that the output score f is a linear function of x1.sq, and
ignores x2.sq. The plot below visualizes the output scores using the point fill aesthetic.

data.dt[, £ := x1.sql
true.decision.boundary <- 0.2
ggplot O+
theme_bw()+
scale_fill_gradient2(midpoint=true.decision.boundary)+
geom_point (aes(
x1.sq, x2.sq, fill=f),
shape=21,
color="grey",
data=data.dt)

166 Support Vector Machines

1.004
0.75-
. . .t
. 0.75
3 0.50- I
Q 0.50
‘ 0.25
0.25-
0.00- . . .
0.00 0.25 0.50 0.75 1.00
x1.sq

In particular, we assume that the label y is negative (-1) if x1.sq + noise < threshold,
and positive (1) otherwise. The plot below visualizes the scores and labels, as a function of
the input feature x1. It also shows the true score function in black. Of course, we would not
be able to make this visualization with real data (only the labels are known in real data, not
the scores).

data.dt[
, f.noise := f+rnorm(N, 0, 0.2)
1L
, y.num := ifelse(f.noise<true.decision.boundary, -1, 1)
1L
, y := factor(y.num)
]
table(data.dt$y)
-1 1
56 44

scores <- data.table(xl=seq(-1, 1, 1=101))[
, x1.sq := x172
1L
, £ :=x1.8q]
x1.boundaries <- data.table(
boundary=c(1, -1)#*sqrt(true.decision.boundary))
ggplot)+
scale_y_continuous(breaks=seq(0, 1, by=0.2))+
geom_vline (aes(
xintercept=boundary),

Generate and plot some data 167

color="grey50",

data=x1.boundaries)+
geom_line (aes(

x1,),

data=scores)+
geom_point (aes(

x1, f.noise, color=y),

shape=21,

£il1=NA,

data=data.dt)

o]
(o]
1.0-
0.8-
0.6- y
G o -1
0.4- R ° o o1
o]

o o o

0.2- o o o
%o o
(o]

O(p o

0.0- &
o %o o o
o]
o o 2 o0 ©
o
o]
(o]
-1.0 -05 0.0 05 1.0
x1

The plot below shows the scores and labels, as a function of the squared feature x1.sq. It is
clear that the score function that we want to learn is linear in x1.sq.

x1sq.boundary <- data.table(boundary=true.decision.boundary)
ggplot O+
scale_y_continuous(breaks=seq(0, 1, by=0.2))+
scale_x_continuous (breaks=seq(0, 1, by=0.2))+
geom_vline (aes(
xintercept=boundary) ,
color="grey50",
data=x1sq.boundary)+
geom_line(aes(xl.sq, f), data=scores)+
geom_point (aes(
x1.sq, f.noise, color=y),
shape=21,
£il1=NA,
data=data.dt)

168 Support Vector Machines

o
(o]
1.0-
0.8-
0.6- y
y— o -1
o o o1
0.4- -
(o]
o oG
0.2- T
0%
1 (o]
o
0.0- %
8 oo
[e) o
® ® o
(o]
(o]
(o]
0.0 0.2 0.4 0.6 0.8 10

x1.sq

Next, we visualize the labels in the two-dimensional squared feature space. It is clear that
the decision boundary is linear in this space.

ggplot O+
scale_y_continuous (breaks=seq(0, 1, by=0.2))+
scale_x_continuous (breaks=seq(0, 1, by=0.2))+
geom_vline (aes(
xintercept=boundary),
color="grey50",
data=x1sq.boundary)+
geom_point (aes (
x1l.sq, x2.sq, color=y),
shape=21,
£il1=NA,
data=data.dt)

Generate and plot some data 169

1.0-
o)
o
)
o
0.8- o
o
o o o0 © ©
)
- © (o} o (o} o
0.6- °o S
© y
o
7 9 o o -1
o o o
x
o o o1
0.4- = o L
%° o o
o]
oo o
% o 5
oo
0.2- 5 o o o © = o°
o (oo
) o
o o (o} © o o © o
(5} o o o o °
00- ®0® o000 ° &° 0o o o o
| | | | |
0.0 0.2 0.4 0.6 0.8 1.0
x1.sq

The plot below shows the input feature space (x1 and x2). It is clear that the decision
boundary is non-linear in x1.

ggplot)+
scale_y_continuous(breaks=seq(-1, 1, by=0.2))+
scale_x_continuous(breaks=seq(-1, 1, by=0.2))+
geom_vline (aes(
xintercept=boundary),
color="grey50",
data=x1.boundaries)+
geom_point (aes(
x1, x2, color=y),
shape=21,
£il1=NA,
data=data.dt)

170

1.0-

0.8-

0.6-

0.4-

0.2-

0.2

0‘4

-0.6-

Support Vector Machines

oo
o
o
o o o
o o °
o ° o
o o
o o
o o
o o
o) o
o o
o o o
(o]
o
(P 5 ; o o
o o oo o,
o] y
o o
[e) (o]
o o o o o — o -1
o Cg o o o 1
o]
o o o
o o
o o o
o
- o o o
o
o o
o © (o}
o o
° o
o
o
o o o o
o © o
o
o

-1.0 -0.8 -0.6 -0.4 -0.2 dO 0.2 0.4 0.6 0.8 1.0
x1

The animint below uses clickSelects to show which points in the input and squared space
correspond. We just need to create an data.i variable that has a unique ID for each data

point.

data.dt[, data.i := 1:.N]

YVAR <- function(dt, y.var){
dt$y.var <- factor(y.var, c("x2", "x2.sq", "f"))
dt

3

animint (
input=ggplot)+

ggtitle("input feature space")+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+

facet_grid(y.var ~ ., scales="free")+
scale_x_continuous(breaks=seq(-1, 1, by=0.2))+
ylab(ll ||)+

guides(color="none")+
geom_vline(aes(
xintercept=boundary),
color="grey50",
data=x1.boundaries)+
geom_point (aes(
x1, x2, color=y),
clickSelects="data.i",
size=4,
alpha=0.7,
data=YVAR(data.dt, "x2"))+

Generate and plot some data 171

geom_line (aes(

x1,),

data=YVAR(scores, "f"))+
geom_point (aes(

x1, f.noise, color=y),

clickSelects="data.i",

size=4,

alpha=0.7,

data=YVAR(data.dt, "f")),

square=ggplot () +

ggtitle("squared feature space")+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(y.var ~ ., scales="free")+
ylab(" ll)+
scale_x_continuous(breaks=seq(0, 1, by=0.2))+
geom_vline(aes(

xintercept=boundary),

color="grey50",

data=x1sq.boundary)+
geom_point (aes(

xl.sq, x2.sq, color=y),

clickSelects="data.i",

size=4,

alpha=0.7,

data=YVAR(data.dt, "x2.sq"))+
geom_line (aes(

xl.sq, f),

data=YVAR(scores, "f"))+
geom_point (aes(

x1.sq, f.noise, color=y),

clickSelects="data.i",

size=4,

alpha=0.7,

data=YVAR(data.dt, "f")))

172 Support Vector Machines
Lo- input feature space 1.00< squared feature space
0.5- 0.75+
0.0- ¢ 0.50- N

=]
-0.5- 0.95-
-1.0- 0.00-

y
1.0- 1.0- 1
-1
0.5- ~ 05- -
0.0- Pt 1 004 —
10-08-06-04-0200 02 04 06 0.8 1.0 00 02 04 06 08 10

x1

xl.sq

Note how we used two multi-panel plots with the addColumn then facet idiom, rather than
creating four separate plots. This emphasizes the fact that some plots/facets have a common
x1 or x1.sq axis. Note that we also hid the color legend in the first plot, since it is sufficient

to just have one color legend.

12.2 Linear SVM

train.i <- 1:N

data.dt[
, set := "validation"
1L
train.i, set := "subtrain"
]

table(data.dt$set)

subtrain validation
50 50

subtrain.dt <- data.dt[set=="subtrain",]
ggplot O+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(set ~ .)+
geom_vline (aes(
xintercept=boundary),
color="grey50",
data=x1.boundaries)+
scale_y_continuous(breaks=seq(-1, 1, by=0.2))+
scale_x_continuous(breaks=seq(-1, 1, by=0.2))+
geom_point (aes(
x1, x2, color=y),

Linear SVM 173

data=data.dt)

1.0+ °)

0.6+

0.0 ° LJ ° ° o
-0.2-
-0.4+ —
-0.6 . . °
~0.8- PS °© ° y

urengns

X2
I
=
o
:
o
[]
I
i

1.0+
0.84 b4 (] ° ° ° °
0.6+ °

0.4- o o ° ’
0.2- ¢ ° °e
0.04 ° e

—0.21 ° ° . °
_0.4' .. ° .. - ¢)
-0.6 . ° e °
-0.8- ° e °
-1.0+

[]
(]
[]
uomepifen

-10 -08 -0.6 -04 -02 00 0.2 0.4 0.6 0.8 1.0
x1

We begin by fitting a linear SVM to the train data in the squared feature space, and
visualizing the true labels y along with the predicted labels pred.y.

library(kernlab)

Attaching package: 'kernlab'

The following object is masked from 'package:animint2':
alpha

squared.mat <- subtrain.dt[, cbind(xl.sq, x2.sq)]
y.vec <- subtrain.dt$y
fit <- ksvm(squared.mat, y.vec, kernel="vanilladot")

Setting default kernel parameters

subtrain.dt$pred.y <- predict(fit)
ggplot O+
geom_point (aes(
x1.sq, x2.sq, color=pred.y, fill=y),
shape=21,
size=4,
stroke=2,
data=subtrain.dt)

174 Support Vector Machines

1.00-

0.75- “ .

-1

pred.y
o o o

® o
O
o e © og0
0.00- ." o o ¢ o

0.00 0.25 0.50 0.75 1.00
x1.sq

It is clear from the plot above that there are several mis-classified train data points. In the
plot below we visualize the decision boundary and margin.

predF <- function(fit, X){
fit.sc <- scaling(fit)$x.scale
if(is.null(fit.sc)){
fit.sc <- list(
"scaled:center"=c(0,0),
"scaled:scale"=c(1,1))
+
mu <- fit.sc[["scaled:center"]]
sigma <- fit.sc[["scaled:scale"]]
X.sc <- scale(X, mu, sigma)
kernelMult (
kernelf (fit),
X.sc,
xmatrix(fit) [[1]],
coef (fit) [[1]1]1)-b(fit)
}
xsq.vec <- seq(0, 1, 1=41)
grid.sq.dt <- data.table(expand.grid(
x1.sq=xsq.vec,
x2.s8q=xsq.vecC

NI

, pred.f := predF(fit, cbind(xl.sq, x2.sq))]

subtrain.dt[, train.error := ifelse(y==pred.y, "correct", "error")]
ggplot O+

theme_bw()+

Linear SVM

scale_color_manual (values=c(error="black", correct=NA))+
geom_point (aes(
x1.sq, x2.s8q, fill=y, color=train.error),

shape=21,
stroke=1,

size=4,
data=subtrain.dt)+

geom_vline (aes(
xintercept=boundary), color="grey50",

data=x1sq.boundary)+

geom_contour (aes(
x1.sq, x2.sq, z=pred.f),

breaks=0,
color="black",
data=grid.sq.dt)+
geom_contour (aes(
x1.sq, x2.sq, z=pred.f),
breaks=c(-1, 1),
color="black",
linetype="dashed",
data=grid.sq.dt)

1.00- :
® ". o o
1
° |
1
1
0.75+4 ;
Y '
h ° y
’r ‘ -1
5 ® ® 01
o 0.50+ ”)
x f train.error
l, correct
[] N ® Q error
1
0.25 - ‘ - ®
. e
1
1
o '@ |®
o
0.00- .0., °
(0.25 0.75 1.00

The plot above shows the true decision boundary using a grey vline. It also uses
geom_contour to display the decision boundary (solid black line, predicted score 0) and

the margin (dashed black line, predicted score -1 and 1). Since the decision boundary and

margin are linear in this space, we can also use geom_abline to display them. To do that we
need to do some math, and work out the equations for the slope and intercepts of those lines
(as a function of the learned bias b(fit) and weight.vec, as well as the scale parameters

176 Support Vector Machines

mu and sigma).

The equation of the margin lines is z2 = m2 + s2/w2[c+b+wi*ml/s1]
—-s2xwl/(w2*s1)*xzl for c=1 and -1. z is input feature, m is mean, s
is scale, w 1s learned weight.
fit.sc <- scaling(fit)$x.scale
if (is.null(fit.sc)){
fit.sc <- list(
"scaled:center"=c(0,0),
"scaled:scale"=c(1,1))
}
mu <- fit.sc[["scaled:center"]]
sigma <- fit.sc[["scaled:scale"]]
weight.vec <- colSums(xmatrix(fit) [[1]]*coef(fit) [[1]])
predF.linear <- function(fit, X){
X.sc <- scale(X, mu, sigma)
X.sc %*) weight.vec - b(fit)
}
abline.dt <- data.table(
y=factor(c(-1,0,1)),
boundary=c("margin", "decision", "margin"),
intercept=mu[2]+sigma[2] /weight.vec[2]*(
c(-1, 0, 1)+b(fit)+weight.vec[1]*mul[1]/sigmal1]),
slope=-weight.vec[1]*sigma[2]/(weight.vec[2]*sigma[1]))
ggplot O+
theme_bw()+
scale_linetype_manual (values=c(margin="dashed", decision="so0lid"))+
geom_abline (aes(
slope=slope, intercept=intercept, linetype=boundary),
color="green",
size=1,
data=abline.dt)+
geom_point (aes(
xl.sq, x2.sq, color=y),
shape=21,
£i11=NA,
size=4,
data=subtrain.dt)+
geom_contour (aes (
x1.sq, x2.sq, z=pred.f),
breaks=0,
color="black",
data=grid.sq.dt)+
geom_contour (aes (
x1.sq, x2.sq, z=pred.f),
breaks=c(-1, 1),
color="black",
linetype="dashed",
data=grid.sq.dt)

177

Linear SVM
1.00 - !
' I O O
/
]
1
0 !
751
/
! y
| O | o]
o ! o Oa
o 0.50- |
x o boundary
',' O /,decisFon
margin
| o O v 9
0.25- !
/
|
1
|
1
1 O
0.004 ; ©) O
0.50 0.75 1.00
x1.sq

The plot above confirms that our computation of the slope and intercepts (green lines) agrees
with the contours (black lines). In the plot below, we show the learned alpha coefficients,

and add a geom_segment to visualize the slack.

subtrain.dt[, alpha := 0]
train.row.vec <- as.integer (rownames (xmatrix(fit) [[1]]))
subtrain.dt[train.row.vec, alpha := kernlab::alpha(fit)[[1]] 1]
subtrain.dt[, status := ifelse(

alpha==0, "alpha=0",

ifelse(alpha==1, "alpha=C", "O<alpha<C"))]
slack.slope <- weight.vec[2]*sigma[1]/(weight.vec[1]*sigmal[2])

slack.dt <- subtrain.dt[alpha==1,]
slack.join <- abline.dt[slack.dt, on=list(y)]
= ((

slack.join[, x1.sq.margin
x2.sq-slack.slope*x1.sq-intercept)/(slope-slack.slope)]
:= slope*xl.sq.margin + intercept]

slack.join[, x2.sq.margin

sv.colors <- c(
"alpha=0"="white",
"O<alpha<C"="black",
"alpha=C"="grey")

ggplot O+
scale_linetype_manual (values=c(margin="dashed", decision="so0lid"))+

theme_bw()+

geom_vline (aes(
xintercept=boundary), color="violet",
data=x1sq.boundary)+

geom_abline (aes(
slope=slope, intercept=intercept, linetype=boundary),

Support Vector Machines

size=1,
data=abline.dt)+
geom_segment (aes(
xl.sq, x2.sq,
xend=x1.sq.margin, yend=x2.sq.margin),
color="grey",
data=slack.join)+
scale_fill manual(values=sv.colors, breaks=names(sv.colors))+

geom_point (aes(
x1.sq, x2.sq, color=y, fill=status),

shape=21,
size=4,
data=subtrain.dt)
p ® I
O] I
I I
0.75- I I y
00O ® O
I]
Ol
—e] O
1 I boundary
O
2 0.50+ , ®] /decision
; ’)
N] I , margin
I] © O
O 1 O status
O QO alpha=0
! ® I
0.25+ 85 | @ o 1 @ O<alpha<C
i e ®] O alpha=C
o Frg—e '-Io oo !
@ I ! O
0001 PO —0— O e
T ! T I ' T T T
0.25 0.50 0.75 1.00

The plot above shows the slack in grey segments, and the decision and margin lines in
black. The Bayes decision boundary is shown in the background as a vertical violet line. The
support vectors are the points with non-zero alpha coefficients. Black filled support vectors
are on the margin, and grey support vectors are on the wrong side of the margin (and have
non-zero slack). The plot below shows the model that was learned in the original feature

space,

n.grid <- 41
x.vec <- seq(-1, 1, 1=n.grid)

grid.dt <- data.table(expand.grid(

x1=x.vec,
x2=x.vec))
getBoundaryDF <- function(score.vec, level.vec=c(-1, 0, 1)){

Linear SVM 179

stopifnot(length(score.vec) == n.grid * n.grid)
several.paths <- contourLines(
X.vec, x.vec,
matrix(score.vec, n.grid, n.grid),
levels=level.vec)
contour.list <- 1list()
for(path.i in seq_along(several.paths)){
contour.list[[path.i]] <- with(several.paths[[path.i]], data.table(
path.i,
level .num=as.numeric(level),
level.fac=factor(level, level.vec),

boundary=ifelse(level==0, "decision", "margin"),
x1=x, x2=y))

+

do.call(rbind, contour.list)

}
grid.dt[, pred.f := predF(fit, cbind(x172, x272))]
boundaries <- grid.dt[, getBoundaryDF (pred.f)]
gegplot O+
scale_linetype_manual (values=c(margin="dashed", decision="solid"))+
geom_vline (aes(
xintercept=boundary),
color="violet",
data=x1.boundaries)+
geom_path(aes(
x1, x2, group=path.i, linetype=boundary),
size=1,
data=boundaries)+
scale_fill _manual (values=sv.colors, breaks=names(sv.colors))+
scale_size_manual (values=c(correct=2, error=4))+
geom_point (aes(
x1, x2, color=y,
size=train.error,
fill=status),
shape=21,
data=subtrain.dt)

180 Support Vector Machines

1.0- \ Ji * 0O

0.5-
boundary

== margin

train.error

O correct

QO error

S = = e o=
=

I
]
I
I
I
© I = decision
I
|
|
|
1
l| status

-0.5- o 4 o alpha=0

] 1 e O<alpha<C
I I \ \ o
I \

(o] o alpha=C

101 I ! \ \

-1.0 -0.5 0.0 05 10
x1

The goal below will be to make an animint that shows how the decision boundary, margin,
and slack change as a function of the cost parameter.

modelInfo.list <- 1list()
predictions.list <- list()
slackSegs.list <- 1list()
modelLines.list <- 1list()
inputBoundaries.list <- list()
setErrors.list <- list()
cost.by <- 0.2
for(cost.param in round(10~seq(-1, 1, by=cost.by),1)){
fit <- ksvm(
squared.mat, y.vec, kernel="vanilladot", scaled=FALSE, C=cost.param)
fit.sc <- scaling(fit)$x.scale
if(is.null(fit.sc)){
fit.sc <- list(
"scaled:center"=c(0,0),
"scaled:scale"=c(1,1))
}
mu <- fit.sc[["scaled:center"]]
sigma <- fit.sc[["scaled:scale"]]
weight.vec <- colSums(xmatrix(fit) [[1]]*coef (fit) [[1]1])
grid.sq.dt[, pred.f := predF(fit, cbind(xl.sq, x2.sq))]
data.dt[, pred.y := predict(fit, cbind(xl.sq, x2.sq))]
one.error <- data.dt[, list(errors=sum(y!=pred.y)), by=set]
setErrors.list[[paste(cost.param)]] <- data.table(
cost.param, one.error)
subtrain.dt[, pred.f := predF(fit, cbind(x172, x272))]

Linear SVM

grid.dt[, pred.f

:= predF(fit, cbind(x172, x272))]

boundaries <- getBoundaryDF(grid.dt$pred.f)
inputBoundaries.list[[paste(cost.param)]] <- data.table(
cost.param, boundaries)
subtrain.dt$alpha <- 0
train.row.vec <- as.integer (rownames (xmatrix(fit) [[1]1]))

subtrain.dt[train.row.vec, alpha
subtrain.dt[, status :=

alpha==0, "alpha=0",
ifelse(alpha==cost.param, "alpha=C", "O<alpha<C"))]

The equation of the margin lines is z2 =

:= kernlab: :alpha(fit) [[1]]]

ifelse(

m2 + s2/w2[c+b+wl*ml/s1]

181

—s2xwl/(w2*s1)*xl for c=1 and -1. = ts input feature, m is mean, s
1s scale, w ts learned wetight.
slack.slope <- weight.vec[2]*sigma[1]/(weight.vec[1]*sigmal[2])
abline.dt <- data.table(
y=factor(c(-1,0,1)),
boundary=c("margin", "decision", "margin"),
intercept=mu[2]+sigma[2] /weight.vec [2]*(
c(-1, 0, 1)+b(fit)+weight.vec[1]*mul[1]/sigmal1]),
slope=-weight.vec[1]*sigma[2]/(weight.vec[2]*sigma[1]))
slack.dt <- subtrain.dt[alpha==cost.param]
slack.join <- abline.dt[slack.dt, on=list(y)]
slack.join[, x1.sq.margin :=
x2.sq-slack.slope*xl.sq-intercept)/(slope-slack.slope)]
slack.join[, x2.sq.margin :=
norm.weights <- as.numeric(weight.vec J*J, weight.vec)
modelInfo.list[[paste(cost.param)]] <- data.table(
cost.param,
slack=slack. join[, sum(l-pred.f*y.num)],
norm=norm.weights,
margin=2/sqrt (norm.weights))
predictions.list[[paste(cost.param)]] <- data.table(
cost.param, subtrain.dt)
slackSegs.list[[paste(cost.param)]] <- data.table(
cost.param, slack.join)
modelLines.list [[paste(cost.param)]] <- data.table(
cost.param, abline.dt)

Setting
Setting
Setting
Setting
Setting
Setting
Setting
Setting
Setting
Setting
Setting

default
default
default
default
default
default
default
default
default
default
default

kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel
kernel

parameters
parameters
parameters
parameters
parameters
parameters
parameters
parameters
parameters
parameters
parameters

(

slope*xl.sq.margin + intercept]

182 Support Vector Machines

inputBoundaries <- do.call(rbind, inputBoundaries.list)
predictions <- do.call(rbind, predictions.list)
slackSegs <- do.call(rbind, slackSegs.list)
modellines <- do.call(rbind, modelLines.list)
modelInfo <- do.call(rbind, modelInfo.list)
setErrors <- do.call(rbind, setErrors.list)
modelInfo.tall <- melt(modelInfo, id.vars="cost.param")
grid.sq.dt$boundary <- "true"
setErrors$variable <- "errors"
inputBoundaries[, boundary := ifelse(level.num==0, "decision", "margin")]
slackSegs$boundary <- "margin"
set.label.select <- data.table(
cost.param=range (setErrors$cost.param),
set=c("validation", "subtrain"),
hjust=c(1, 0))
set.labels <- setErrors[set.label.select, on=list(cost.param, set)]
viz.linear.svm <- animint(
selectModel=ggplot () +
ggtitle("Select regularization parameter")+
scale_x_continuous(limits=c(-1.5, 1.5))+
geom_tallrect (aes(
xmin=logl0(cost.param)-cost.by/2,
xmax=1ogl0(cost.param)+cost.by/2),
clickSelects="cost.param",
alpha=0.5,
data=modelInfo)+
theme_bw()+
facet_grid(variable ~ ., scales="free")+
geom_line (aes(
loglO(cost.param), errors,
group=set, color=set),
data=setErrors)+
geom_text (aes(
loglO(cost.param), errors-1, label=set,
hjust=hjust,
color=set),
data=set.labels)+
guides(color="none")+
geom_line (aes(
loglO(cost.param), loglO(value)),
data=modelInfo.tall),
inputSpace=ggplot () +
ggtitle("Input space features")+
scale_fill manual (values=sv.colors, breaks=names(sv.colors))+
geom_vline (aes(
xintercept=boundary),
color="violet",
data=x1.boundaries)+
guides(color="none", fill="none", linetype="none")+

Linear SVM 183

scale_linetype_manual (values=c(
"-1"="dashed",
"O"="solid",
"1"="dashed"))+

geom_path(aes (
x1, x2,
group=path.i,
linetype=level.fac),
showSelected=c("boundary", "cost.param“),
color="black",
data=inputBoundaries)+

geom_point (aes(
x1, x2, fill=status),
showSelected=c("status", "y", "data.i", "cost.param"),
size=b,
color="grey",
data=predictions)+

geom_point (aes(
x1, x2, color=y, fill=status),

showSelected=c("cost.param", "status", "y"),
clickSelects="data.i",
size=3,

data=predictions),
kernelSpace=ggplot () +
ggtitle("Kernel space features")+
geom_vline (aes(
xintercept=boundary), color="violet",
data=x1sq.boundary)+
##coord_cartesian(zlim=c(0, 1), ylim=c(0, 1))+
geom_abline (aes(
slope=slope, intercept=intercept, linetype=boundary),
showSelected="cost.param",
color="black",
data=modelLines)+
scale_linetype_manual (values=c(
decision="solid",
margin="dashed",
true="so0lid"))+
geom_point (aes(
x1l.sq, x2.sq, fill=status),
showSelected=c("data.i", "cost.param"),
size=b,
color="grey",
data=predictions)+
geom_point (aes(
x1l.sq, x2.sq, color=y, fill=status),
clickSelects="data.i",
showSelected="cost.param",
size=3,

184 Support Vector Machines

data=predictions)+

scale_fill manual (values=sv.colors, breaks=names(sv.colors))+

geom_segment (aes (
xl.sq, x2.sq,
xend=x1.sq.margin, yend=x2.sq.margin),
showSelected=c("cost.param", "boundary"),
color="grey",
data=slackSegs))
viz.linear.svm

SI00I3

0.54

urdren

errors
x2

0.0+

5q

1.0-

0.5-

0.0 -05-]
\ r

1.5 U /‘I

1.4 A 0.00

1.3- ! L 107

1 0 1

o

1
1
1
]
i
1
v
1
]
b
1
1
[
1
1
1
[}
P
1

er

_Select regularization parameter _ Input space features _ Kernel space features
204 104]
16- o~ 1.00
124 [

—ll.l] 70‘,5 (]:D 015 l‘G ' 6 i
log10(cost.param) x1 x1sq

¥

1

-1
boundary
— decision
Jre—
status
© apha=0
+ o<alpha<C
o alpha=C

12.3 Non-linear polynomial kernel SVM

In the previous section we fit a linear kernel in the squared feature space, which resulted in
learning a function which is non-linear in terms of the original feature space. In this section

we directly fit a non-linear polynomial kernel in the original space.

predictions.list <- list()

inputBoundaries.list <- list()

setErrors.list <- list()

cost.by <- 0.2

orig.mat <- subtrain.dt[, cbind(xl, x2)]

for(cost.param in 107seq(-1, 3, by=cost.by)){

for(degree.num in seq(l, 6, by=1)){
k <- polydot(degree.num, offset=0)
fit <- ksvm(
orig.mat, y.vec, kernel=k, scaled=FALSE, C=cost.param)

grid.dt[, pred.f := predF(fit, cbind(xl, x2))]
grid.dt[, pred.y := predict(fit, cbind(xl, x2))]
grid.dt[, stopifnot(sign(pred.f) == pred.y)]
data.dt[, pred.y := predict(fit, cbind(xl, x2))]

one.error <- data.dt[, list(errors=sum(y != pred.y)), by=set]
setErrors.list[[paste(cost.param, degree.num)]] <- data.table(

cost.param, degree.num, one.error)
boundaries <- getBoundaryDF (grid.dt$pred.f)
if (is.data.frame(boundaries) && nrow(boundaries)){

Non-linear polynomial kernel SVM

}
}

cost.deg <- paste(cost.param, degree.num)
inputBoundaries.list[[cost.deg]] <- data.table(
cost.param, degree.num, boundaries)
}
subtrain.dt[, alpha := 0]
train.row.vec <- as.integer (rownames(xmatrix(fit) [[1]]))
subtrain.dt[train.row.vec, alpha := kernlab::alpha(fit) [[1]] 1]
subtrain.dt[, status := ifelse(
alpha==0, "alpha=0",
ifelse(alpha==cost.param, "alpha=C", "O<alpha<C"))]
predictions.list[[paste(cost.param, degree.num)]] <- data.table(
cost.param, degree.num, subtrain.dt)

inputBoundaries <- do.call(rbind, inputBoundaries.list)
predictions <- do.call(rbind, predictions.list)
setErrors <- do.call(rbind, setErrors.list)
validationErrors <- setErrors[set=="validation"]
validationErrors$select <- "degree"
setErrors$select <- '"cost"
animint (

selectModel=ggplot () +

ggtitle("Select hyper parameters")+
geom_tallrect (aes(

xmin=logl0(cost.param)-cost.by/2,

xmax=logl0(cost.param)+cost.by/2),

clickSelects="cost.param",

alpha=0.5,

data=setErrors[degree.num==1 & set=="subtrain",])+
theme_bw()+
theme (panel .margin=grid::unit(0, "lines"))+
theme_animint (width=350, rowspan=1)+
facet_grid(select ~ ., scales="free")+
ylab("")+
geom_line (aes(

logl0(cost.param), errors,

key=set,

group=set,

color=set),

showSelected="degree.num",

data=setErrors)+
scale_fill_gradient("validErr", low="white", high="red")+
geom_tile(aes(

loglO(cost.param), degree.num, fill=errors),

clickSelects="degree.num",

data=validationErrors),

inputSpace=ggplot ()+

theme_bw()+
ggtitle("Input space features")+

185

186 Support Vector Machines

scale_fill manual (values=sv.colors, breaks=names(sv.colors))+
geom_vline (aes(
xintercept=boundary),
color="violet",
data=x1.boundaries)+
scale_linetype_manual (values=c(
margin="dashed",
decision="solid"))+
geom_path(aes(
x1, x2,
group=path.i,
linetype=boundary),
showSelected=c("degree.num", "cost.param"),
color="black",
data=inputBoundaries)+
geom_point (aes(
x1, x2, color=y, fill=status),
showSelected=c("cost.param", "degree.num"),
size=3,
data=predictions))

Select hyper parameters

Input space features

20- 1.0+ 5 » oo
' e
’
Ld
154 o k4
2 0.5- . o y
validErr P ° 1
10+ H ® el oo - 1
[r °
N R »” . boundary
6- 12 ” decision
8 p ‘ | | margin
4 2 set 05- [status
E subtrain ’ 5 i ®e @ alpha=0
2. [validation - @ ° . * 0<alpha<C
10 @ alpha=C
1 | | | ’ 1 | T 1 1
-1 0 1 2 -1.0 05 0.0 0.5 1.0
log10(cost.param) x1

12.4 Chapter summary and exercises

We used ggplots to visualize the Support Vector Machine model for binary classification.
We used animint and interactivity to show how the SVM decision boundary changes as a
function of the model hyper-parameters.

Exercises:

e Use HTML table layout for viz.linear.svm, so that the two feature space plots appear
beside each other, and the “Select regularization parameter” plot appears above or below.
e Use rbfdot as the kernel function. Compute subtrain and validation error, then add a

new panel to the “select hyper parameters” plot.

o Default scales use the same two colors for the y and set legends, which could be confusing.

Chapter summary and exercises 187

Change the colors in one of the two legends so that they are different.

e Use color and color_off parameters to change the appearance of the geom_tile when
selected or not, as explained in Chapter 6, section Specifying how selection state is
displayed.

Next, Chapter 13 explains how to visualize the Poisson regression model.

../Ch13/Ch13-poisson-regression.html

13

Poisson regression

This goal of this chapter is to create an interactive data visualization that explains Poisson
regression, a machine learning model for predicting an integer-valued output from inputs
that are real-valued vectors. This is a “linear regression” model since it learns a linear
function from the inputs to the output. Like least squares regression, Poisson regression
can be formulated as a maximum likelihood problem. However, it differs from least squares
linear regression since it uses a Poisson distribution to model the output labels, instead
of a Gaussian distribution. This modeling choice is appropriate when output labels are
non-negative integers.

Chapter outline:

e We begin by creating a plot that shows the probability mass function for a Poisson
distribution mean parameter that can be interactively selected.

e« We then add a second panel that shows the cumulative distribution function.

e We then add a second plot which shows the Poisson loss, with a second selector for label
value.

13.1 Plot the probability mass function and select the Poisson mean
parameter

The goal of this section is to create a data visualization that shows the probability mass
function for a selected Poisson mean parameter.

N A = vean = 2

[ecff= nitan

fwadin (avams

Figure 13.1: Poisson regression viz prob

library(data.table)

poisson.mean.diff <- 0.25

poisson.mean.vec <- seq(0, 5, by=poisson.mean.diff)
quantile.max <- 0.99

poisson.prob.list <- 1list()

for(poisson.mean in poisson.mean.vec)q{

189

https://en.wikipedia.org/wiki/Poisson_regression
https://en.wikipedia.org/wiki/Poisson_regression

190

}

label.max <- gpois(quantile.max, poisson.mean)
label <- 0:label.max

probability <- dpois(label, poisson.mean)
poisson.prob.list[[paste(poisson.mean)]] <- data.table(

poisson.mean,

label,

probability,

cum. prob=cumsum(probability))

poisson.prob <- do.call(rbind, poisson.prob.list)
poisson.prob

The static data viz below shows one facet for each Poisson distribution.

poisson.mean label probability cum.prob

0.00 0 1.000000000 1.0000000
0.25 0 0.778800783 0.7788008

5.00 10 0.018132789 0.9863047
5.00 11 0.008242177 0.9945469

mean.tallrects <- data.table(

poisson.mean=poisson.mean.vec,
min=poisson.mean.vec - poisson.mean.diff/2,
max=poisson.mean.vec + poisson.mean.diff/2)

library(animint2)
prob.mass <- ggplot()+

theme_bw()+
theme (panel .margin=grid: :unit(0, "cm"))+
geom_tallrect (aes(

xmin=min, xmax=max),
clickSelects="poisson.mean",
alpha=0.6,
data=mean.tallrects)+

geom_point (aes(

label, probability,

Poisson regression

tooltip=sprintf ("prob(label = %d) = %f", label, probability)),

color="red",
showSelected="poisson.mean",
size=b,

data=poisson.prob)

prob.mass+

facet_wrap("poisson.mean")

Plot the probability mass function and select the Poisson mean parameter 191

0 0.25 0.5 0.75 1
1.25 15 1.75 2 2.25
25 2.75 3 8,25 &5

SN5!

S

4.25

N

i
(6]

4.75

QUIOUIO OUI0UIO OUI0UIO OUIoUIO OUIoUIO
[T

probability
CO00Ok 0000k 0000k O000k 0000k
ONUINO OoONUINO OoONUINO oNUINO oNUINO

label

Note that we used alpha=0.6 with geom_tallrect, which means that the tallrect for the
selected mean has 0.6 opacity, and the other tallrects have 0.1 opacity. Note also that we
use color="red" and size=5 with geom_point so that it is easier to see the points on a
grey background, and to hover the cursor over the points to see the tooltip. We next create

an interactive version with animint.

animint (prob.mass)

192 Poisson regression

0.75-

0.50-

probability

0.25-

label

You can click the viz above to change the mean of the Poisson distribution. You can also
hover the cursor over a data point to see its probability. Note that for integer values of the
Poisson mean, there are two labels that are the most probable (the mode of the Poisson
distribution). For example the Poisson distribution with a mean of 3 attains its maximum
probability of about 0.224 at label values of 2 and 3.

13.2 Add a panel for the cumulative distribution function

To add a panel for the cumulative distribution function, we will re-make the ggplot based
on the sketch below.

Add a panel for the cumulative distribution function 193

pirk Qoo

0 . oot
= | I E'Abl:f . Nzek = Yo
= | = grohrly

=l e leﬁatu*'d 2““

1 Lallveck
e, date = ReisionTroh VanveL

Ximin~ pean -~ [z

— 7 “ .
| — -— 7 bline ‘ b ym;,(:me.w+w/'1.
. “f“‘b’?fj' - k. fio AickSeloctt= meds
df ?;5_’."3-\7 (datezrnaam Parans
U ooe
x =\
¢ = G 1o

> A"""*B’-(\‘é diptian

bl date™ Toi sionum
G LA B

Figure 13.2: Poisson regression viz cum prob

When we specify the data sets, we will use the addColumn then facet idiom to add a panel
variable.

addPanel <- function(dt, panel){
data.table(dt, panel=factor(panel, c("probability", "cum prob")))
}
quantile.max.dt <- data.table(quantile.max)
animint (
prob=ggplot)+
theme_bw()+
theme (panel .margin=grid: :unit(0, "cm"))+
facet_grid(panel ~ ., scales="free")+
geom_hline (aes(
yintercept=quantile.max),
color="grey",
data=addPanel (quantile.max.dt, "cum prob"))+
geom_tallrect(aes(
xmin=min, xmax=max),
clickSelects="poisson.mean",
alpha=0.6,
data=mean.tallrects)+
geom_point (aes(
label, probability,
tooltip=sprintf (
"prob(label = %d) = %f", label, probability)),
showSelected="poisson.mean",
color="red",
size=5,
data=addPanel (poisson.prob, "probability"))+
geom_point (aes(
label, cum.prob,
tooltip=sprintf (
"prob(label <= %d) = %f", label, cum.prob)),
showSelected="poisson.mean",
color="red",
size=5,
data=addPanel (poisson.prob, "cum prob")))

194 Poisson regression

0.75-

0.50-

Arqeqord

probability
H
o
-
|

ot
u
-
|
qoxd mmo

label

Note how we used addPanel to add a panel variable to all the data sets for each geom
except geom_tallrect. Using panel as a facet variable has the effect of drawing each geom
in only one panel, except the geom_tallrect which is drawn in each panel.

Note that we also used a geom_hline to show 0.99, the cumulative distribution function
threshold that was used to determine the set of points to plot for each Poisson distribution.
This is an example of “show your arbitrary choices,” one of the general principles of designing
good interactive data visualizations.

13.3 Add a plot of the Poisson loss and a selector for label value

Next we will compute the Poisson loss for several values of the output label.

PoissonLoss <- function(label, seg.mean){
stopifnot (is.numeric(label))

Add a plot of the Poisson loss and a selector for label value 195

stopifnot (is.numeric(seg.mean))
if (any(seg.mean < 0)){
stop("PoissonLoss undefined for negative segment mean")
}
if (length(seg.mean)==1)seg.mean <- rep(seg.mean, length(label))
if (length(label)==1)label <- rep(label, length(seg.mean))
stopifnot (length(seg.mean) == length(label))
not.integer <- round(label) != label
is.negative <- label < O
loss <- ifelse(
not.integer | is.negative, Inf,
ifelse(seg.mean == 0, ifelse(label == 0, 0, Inf),
seg.mean - label * log(seg.mean)
This term makes all the minima zero.
-ifelse(label == 0, 0, label - label*log(label))))
loss

}

Below we compute the loss for several label values, using the list of data tables idiom.

label.vec <- unique(poisson.prob$label)
label.range <- range(label.vec)
mean.vec <- seq(label.range[1], label.range[2], 1=100)
loss.min.list <- 1list()
loss.fun.list <- 1list()
for(label in label.vec){
loss <- PoissonLoss(label, mean.vec)
loss.fun.list[[paste(label)]] <- data.table(
label, poisson.mean=mean.vec, 1loss)
loss.min.list[[paste(label)]] <- data.table(
label, loss=0)
}
loss.fun <- do.call(rbind, loss.fun.list)
loss.min <- do.call(rbind, loss.min.list)

We also make a data table to display text labels for the selected mean and label values.

mean.text <- data.table(
label=max(poisson.prob$label) /2,
probability=0.95,
poisson.mean=poisson.mean.vec)

loss.max <- 10

label.text <- data.table(
poisson.mean=max(mean.tallrects$max),
loss=loss.max*0.95,
label=label.vec)

Next we make a data viz with an additional panel.

196 Poisson regression

(viz.loss <- animint(
prob=ggplot)+
theme _bw()+
theme (panel .margin=grid::unit(0, "cm"))+
facet_grid(panel ~ ., scales="free")+
geom_text (aes(
label, probability, label=sprintf (
"Poisson mean = %.2f", poisson.mean)),
color="red",
showSelected="poisson.mean",
data=addPanel (mean.text, "probability"))+
geom_hline(aes(
yintercept=quantile.max),
color="grey",
data=addPanel(quantile.max.dt, "cum prob"))+
geom_point (aes(
label, probability,
tooltip=sprintf (

"prob(label = %d) = %f", label, probability)),
showSelected="poisson.mean",
clickSelects="1label",
color="red",
size=5,
alpha=0.7,
data=addPanel (poisson.prob, "probability"))+

geom_point (aes(
label, cum.prob,
tooltip=sprintf (

"prob(label <= %d) = %f", label, cum.prob)),
color="red",
showSelected="poisson.mean",
clickSelects="1label",
size=5,
alpha=0.7,
data=addPanel (poisson.prob, "cum prob")),

loss=ggplot () +

theme_bw()+

geom_text (aes(
poisson.mean, loss,
label=sprintf ("label = %d", label)),
showSelected="1label",
hjust=0,
data=label.text)+

geom_line (aes(
poisson.mean, loss),
showSelected="1label",
data=loss.fun)+

geom_point (aes(
label, loss),

Add a plot of the Poisson loss and a selector for label value

showSelected="1label",

data=loss.min)+
geom_tallrect (aes(

xmin=min, xmax=max),

clickSelects="poisson.mean",

alpha=0.6,

data=mean.tallrects)))

1.00- @ Poisson mean = 0.00

197

0.75+

0.50-

fnrqeqord

0.25-

0.00+
1.00- @

probability

0.75+

0.50+

qoxd s

0.25-

0 3 6 9

label poisson.mean

The data viz above shows the probability on the left and the Poisson loss on the right.

viz.log.loss <- viz.loss

addX <- function(dt, x.var)data.table(dt, x.var=factor(
x.var, c("poisson mean", "log(poisson mean)")))

finite.loss <- loss.fun[is.finite(loss)]

finite.loss[, log.poisson.mean := log(poisson.mean)]

finite.log.loss <- finite.loss[is.finite(log.poisson.mean)]

mean.tallrects[, log.min := ifelse(min < O, -Inf, log(min))]

Warning in log(min): NaNs produced

viz.log.loss$loss <- ggplot()+

theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(. ~ x.var, scales="free")+
xlab("")+
coord_cartesian(ylim=c(0, loss.max))+
geom_text (aes(

poisson.mean, loss, label=sprintf(

"label = %d", label)),

showSelected="1label",

hjust=0,

data=addX(label.text, "poisson mean"))+
geom_line (aes(

198

poisson.mean, loss),

showSelected="1label",

data=addX(finite.loss, "poisson mean"))+
geom_point (aes(

label, loss),

showSelected="1abel",

data=addX(loss.min, "poisson mean"))+
geom_tallrect (aes(

xmin=min, xmax=max),

clickSelects="poisson.mean",

alpha=0.6,

data=addX(mean.tallrects, "poisson mean"))+
geom_line (aes(

log.poisson.mean, loss),

showSelected="1label",

data=addX(finite.log.loss, "log(poisson mean)"))+
geom_point (aes(

log(label), loss),

showSelected="1label",

data=addX(loss.min[0<label,], "log(poisson mean)"))+
geom_tallrect (aes(

xmin=log.min, xmax=log(max)),

clickSelects="poisson.mean",

alpha=0.6,

data=addX(mean.tallrects, "log(poisson mean)"))

viz.log.loss

1.004 @ Poisson mean = 0.00 o poisson mean
10.0-
0.75- IS label =0
=
0.50- £
g 15
0.25-
2
398
£ 100- £ 50
(=™
0.75- L
g
0.50-
'E 2.5-
o
0.25-
0.00-_, : : : | 0.0-
0 3 6 9 S e |

Poisson regression

Chapter summary and exercises 199

13.4 Chapter summary and exercises

We explained how to visualize the Poisson distribution and loss, which are used for the
Poisson regression model.

Exercises:

e The code above used addPanel and addX helper functions with several geoms to create
multi-panel plots, which results in repetition. To avoid that repetition, create a new data
viz which uses a single geom with a larger data set. For example, the red points in the
two panels of the first plot could be defined using one geom_point with a larger data set
(Hint: use data.table: :melt with measure.vars=c("cum.prob", "probability").

o Create a similar sequence of data visualizations for the Binomial regression model.

Next, Chapter 14 explains how to use the named clickSelects/showSelected to visualize the
PeakSegJoint machine learning model with data-driven selector variables.

https://en.wikipedia.org/wiki/Binomial_regression
../Ch14/Ch14-PeakSegJoint.html

14
Named clickSelects/showSelected

This chapter explains how to use named clickSelects/showSelected variables for creating
data-driven selector names. This feature makes it easier to write animint code, and makes it
faster to compile.

Chapter outline:

e We begin by downloading the PSJ data set and computing the data to plot.

e We show one method of defining an animint with many selectors, using for loops. This
method is technically correct, but computationally inefficient.

e We then explain the preferred method for defining an animint with many selectors, using
named clickSelects/showSelected. This method is more computationally efficient, and
easier to code.

14.1 Download data set

The example data come from the PeakSegJoint package. The code below downloads the
data set.

if (!requireNamespace("animint2data"))
remotes: :install_github("animint/animint2data")

Loading required namespace: animint2data

data(PSJ, package="animint2data")

14.2 Compute data to plot

The section below computes some common data that we will use in two data visualizations
below.

res.error <- PSJ$error.total.chunk

ann.colors <- c(
noPeaks="#f6f4bf",
peakStart="#ffafaf",

201

https://github.com/tdhock/PeakSegJoint

202 Named clickSelects/showSelected

peakEnd="#ff4c4c",
peaks="#ad45ee")
prob.regions are the black segments that show which regions are
mapped to which segmentation problems.
library(data.table)
all.regions <- data.table(do.call(rbind, PSJ$regions.by.problem))
prob.regions.names <- c(
"bases.per.problem", "problem.i", "problem.name",
"chromStart", "chromEnd")
prob.regions <- unique(data.frame(all.regions) [, prob.regions.names])
prob.regions$sample.id <- "problems"
all.modelSelection <- data.table(do.call(
rbind, PSJ$modelSelection.by.problem))
modelSelection.errors <- all.modelSelection[!is.na(errors)]
penalty.range <- all.modelSelection[, c(
min(max.log.lambda), max(min.log.lambda))]
penalty.mid <- mean(penalty.range)
coverage.counts <- table(PSJ$coverage$sample.id)
facet.rows <- length(coverage.counts)+1
dvec <- diff(log(res.error$bases.per.problem))
dval <- exp(mean(dvec))
dval2 <- (dval-1)/2 + 1
res.error$min.bases.per.problem <- res.error$bases.per.problem/dval?2
res.error$max.bases.per.problem <- res.error$bases.per.problem+dval2
modelSelection.labels <- unique(all.modelSelection[, data.table(
problem.name=problem.name,
bases.per.problem=bases.per.problem,
problemStart=problemStart,
problemEnd=problemEnd,
min.log.lambda=penalty.mid,
peaks=max (peaks)+0.5)])

14.3 Define data viz using for loops

The R code below constructs a data viz using for loops.

library(animint?2)
print(timing.for.construct <- system.time({
viz.for <- list(
coverage=ggplot ()+
geom_segment (aes (
chromStart/1e3, problem.i,
xend=chromEnd/1e3, yend=problem.i),
showSelected="bases.per.problem",
clickSelects="problem.name",
data=prob.regions)+

Define data viz using for loops 203

ggtitle("select problem")+
geom_text (aes(

chromStart/1e3, problem.i,

label=sprintf ("%d problems mean size %.1f kb",

problems, mean.bases/1e3)),
showSelected="bases.per.problem",
data=PSJ$problem.labels,

hjust=0)+
geom_segment (aes (

problemStart/1e3, problem.i,

xend=problemEnd/le3, yend=problem.i),

showSelected="bases.per.problem",
clickSelects="problem.name",

size=5,

data=PSJ$problems)+
scale_y_continuous(

"aligned read coverage",

breaks=function(limits){

floor(limits[2])

D+
scale_linetype_manual(

"error type",

limits=c(

"correct",

"false negative",

"false positive"),

values=c(

correct=0,

"false negative"=3,

"false positive"=1))+
scale_x_continuous (paste(

"position on chril",

"(kilo bases = kb)"))+
coord_cartesian(xlim=c(118167.406, 118238.833))+
geom_tallrect(aes(

xmin=chromStart/1e3, xmax=chromEnd/le3,

fill=annotation),

alpha=0.5,

color="grey",

data=PSJ$filled.regions)+
scale_fill manual (values=ann.colors)+
theme_bw()+
theme_animint (width=1500, height=facet.rows*100)+
theme (panel .margin=grid: :unit(0, "cm"))+

facet_grid(sample.id ~ ., labeller=function(df){
df$sample.id <- sub("McGillO0", "", sub(" ", "\n", df$sample.id))
df

}, scales="free")+
geom_line (aes(

204 Named clickSelects/showSelected

base/1e3, count),
data=PSJ$coverage,
color="grey50"),
resError=ggplot ()+
ggtitle("select problem size")+
ylab("minimum percent incorrect regions")+
geom_tallrect (aes(
xmin=min.bases.per.problem,
xmax=max.bases.per.problem),
clickSelects="bases.per.problem",
alpha=0.5,
data=res.error)+
scale_x_loglO()+
geom_line(aes(
bases.per.problem, errors/regions*100,
color=chunks, size=chunks),
data=data.frame(res.error, chunks="this"))+
geom_line(aes(
bases.per.problem, errors/regions*100,
color=chunks, size=chunks),
data=data.frame(PSJ$error.total.all, chunks="all")),
modelSelection=ggplot ()+
geom_segment (aes (
min.log.lambda, peaks,
xend=max.log.lambda, yend=peaks),

showSelected=c("bases.per.problem", "problem.name"),
data=data.frame(all.modelSelection, what="peaks"),
size=5)+

geom_text (aes(
min.log.lambda, peaks,
label=sprintf (
"%.1f kb in problem ¥%s",
(problemEnd-problemStart)/1e3, problem.name)),
showSelected=c("problem.name", "bases.per.problem"),
data=data.frame(modelSelection.labels, what="peaks"))+
geom_segment (aes (
min.log.lambda, as.integer(errors),
xend=max.log.lambda, yend=as.integer(errors)),

showSelected=c("bases.per.problem", "problem.name"),
data=data.frame(modelSelection.errors, what="errors"),
size=5)+

ggtitle("select number of samples with 1 peak")+

ylab("")+

facet_grid(what ~ ., scales="free"),

title="Animint compiler with for loops",

first=PSJ$first)
For every problem there is a selector (called problem.dot) for the
number of peaks in that problem. So in this for loop we add a few
layers with aes_string(clickSelects=problem.dot) or

Define data viz using for loops 205

aes_string (showSelected=problem.dot) to the coverage and
modelSelection plots.
for(problem.dot in names(PSJ$modelSelection.by.problem)){

1))

regions.dt <- PSJ$regions.by.problem[[problem.dot]]
regions.dt[[problem.dot]] <- regions.dt$peaks
if (!'is.null(regions.dt)){
viz.for$coverage <- viz.for$coverage+
geom_tallrect (aes(
xmin=chromStart/1le3,
xmax=chromEnd/1e3,
linetype=status),
showSelected=c(problem.dot, "bases.per.problem"),
data=data.frame(regions.dt),
£il1=NA,
color="black")
¥
if (problem.dot %in)% names(PSJ$peaks.by.problem)){
peaks <- PSJ$peaks.by.problem[[problem.dot]]
peaks[[problem.dot]] <- peaks$peaks
prob.peaks.names <- c(
"bases.per.problem", "problem.i", "problem.name",
"chromStart", "chromEnd", problem.dot)
prob.peaks <- unique(data.frame(peaks) [, prob.peaks.names])
prob.peaks$sample.id <- "problems"
viz.for$coverage <- viz.for$coverage +
geom_segment (aes (
chromStart/1e3, O,
xend=chromEnd/1e3, yend=0),
clickSelects="problem.name",
showSelected=c(problem.dot, "bases.per.problem"),
data=peaks, size=7, color="deepskyblue")+
geom_segment (aes (
chromStart/1e3, problem.i,
xend=chromEnd/1e3, yend=problem.i),
clickSelects="problem.name",
showSelected=c(problem.dot, "bases.per.problem"),
data=prob.peaks, size=7, color="deepskyblue")
}
modelSelection.dt <- PSJ$modelSelection.by.problem[[problem.dot]]
modelSelection.dt[[problem.dot]] <- modelSelection.dt$peaks
viz.for$modelSelection <- viz.for$modelSelection+
geom_tallrect (aes(
xmin=min.log.lambda,
xmax=max.log.lambda) ,
clickSelects=problem.dot,
showSelected=c("problem.name", "bases.per.problem"),
data=modelSelection.dt, alpha=0.5)

206 Named clickSelects/showSelected

user system elapsed
3.091 0.000 3.091

Note the timing of the code above. It takes a long time just to evaluate the R code that
defines this data viz, since it has so many geoms. Next, we compile the data visualization.

print(timing.for.compile <- system.time({
animint2dir(viz.for, "Chi4-for")

)

Warning: Using size for a discrete variable is not advised.
Warning: Using size for a discrete variable is not advised.

Warning in checkSingleShowSelectedValue(meta$selectors): showSelected variables
with only 1 level: chr11.118184422.118184700peaks,
chr11.118192951.118193582peaks, chr11.118203893.118204314peaks

user system elapsed
241.081 0.270 242.610

Note that the compilation also takes a long time, since there are so many geoms. The data
viz can be viewed on Chl4-for/index.html. In the next section we will create the same data
viz, but more efficiently.

14.4 Define data viz using named clickSelects/showSelected

In this section we use named clickSelects/showSelected to create a more efficient version of
the previous data visualization. In general, any data visualization defined using for loops in
R code can be made more efficient by instead using this method.

sample.peaks <- data.table(do.call(rbind, PSJ$peaks.by.problem))
prob.peaks.names <- c(

"bases.per.problem", "problem.i", "problem.name", "peaks",
"chromStart", "chromEnd")
problem.peaks <- unique(sample.peaks[, ..prob.peaks.names])

problem.peaks$sample.id <- "problems"
peakvar <- function(position){

pasteO(gsub("[-:]1", ".", position), "peaks")
}
all.regions[, selector := peakvar(problem.name)]
sample.peaks[, selector := peakvar(problem.name)]
problem.peaks[, selector := peakvar(problem.name)]
all.modelSelection[, selector := peakvar(problem.name)]

print (timing.named.construct <- system.time({
viz.named <- 1list(
coverage=ggplot()+
ggtitle("select problem")+
geom_segment (aes (
chromStart/1e3, problem.i,

../Ch14/Ch14-for/index.html

Define data viz using named clickSelects/showSelected 207

xend=chromEnd/1e3, yend=problem.i),

showSelected="bases.per.problem",

clickSelects="problem.name",
data=prob.regions)+
geom_text (aes(

chromStart/1e3, problem.i,

label=sprintf (

"%d problems mean size %.1f kb",

problems, mean.bases/1e3)),
showSelected="bases.per.problem",
data=PSJ$problem.labels,

hjust=0)+
geom_segment (aes (

problemStart/1e3, problem.i,

xend=problemEnd/1le3, yend=problem.i),

showSelected="bases.per.problem",
clickSelects="problem.name",

size=5,

data=PSJ$problems)+
scale_y_continuous(

"aligned read coverage",

breaks=function(limits){

floor(limits[2])

b+
scale_linetype_manual(

"error type",

limits=c(

"correct",

"false negative",

"false positive"),

values=c(

correct=0,

"false negative"=3,

"false positive"=1))+
scale_x_continuous (paste(

"position on chril",

"(kilo bases = kb)"))+
coord_cartesian(xlim=c(118167.406, 118238.833))+
geom_tallrect (aes(

xmin=chromStart/1e3, xmax=chromEnd/le3,

fill=annotation),

alpha=0.5,

color="grey",

data=PSJ$filled.regions)+
scale_fill _manual (values=ann.colors)+
theme_bw()+
theme_animint (width=1500, height=facet.rows*100)+
theme (panel .margin=grid: :unit(0, "cm"))+
facet_grid(sample.id ~ ., labeller=function(df){

208 Named clickSelects/showSelected

df$sample.id <- sub("McGillO", "", sub(" ", "\n", df$sample.id))
df
}, scales="free")+
geom_line (aes(
base/1e3, count),
data=PSJ$coverage,
color="grey50")+
geom_tallrect (aes(
xmin=chromStart/1e3,
xmax=chromEnd/1e3,
linetype=status),
showSelected=c("selector"="peaks", "bases.per.problem"),
data=all.regions,
fill=NA,
color="black")+
geom_segment (aes (
chromStart/1e3, O,
xend=chromEnd/1e3, yend=0),
clickSelects="problem.name",
showSelected=c("selector"="peaks", "bases.per.problem"),
data=sample.peaks, size=7, color="deepskyblue")+
geom_segment (aes (
chromStart/1e3, problem.i,
xend=chromEnd/1e3, yend=problem.i),
clickSelects="problem.name",
showSelected=c("selector"="peaks", "bases.per.problem"),
data=problem.peaks, size=7, color="deepskyblue"),
resError=ggplot)+
ggtitle("select problem size")+
ylab("minimum percent incorrect regions")+
geom_tallrect (aes(
xmin=min.bases.per.problem,
xmax=max.bases.per.problem),
clickSelects="bases.per.problem",
alpha=0.5,
data=res.error)+
scale_x_logl0()+
geom_line (aes(
bases.per.problem, errors/regions*100,
color=chunks, size=chunks),
data=data.frame(res.error, chunks="this"))+
geom_line(aes(
bases.per.problem, errors/regions*100,
color=chunks, size=chunks),
data=data.frame(PSJ$error.total.all, chunks="all")),
modelSelection=ggplot ()+
geom_segment (aes (
min.log.lambda, peaks,
xend=max.log.lambda, yend=peaks),

Define data viz using named clickSelects/showSelected 209

showSelected=c("problem.name", "bases.per.problem"),
data=data.frame(all.modelSelection, what="peaks"),
size=5)+
geom_text (aes(
min.log.lambda, peaks,
label=sprintf (
"%.1f kb in problem ¥%s",
(problemEnd-problemStart)/1e3, problem.name)),
showSelected=c("problem.name", "bases.per.problem"),
data=data.frame(modelSelection.labels, what="peaks"))+
geom_segment (aes (
min.log.lambda, as.integer(errors),
xend=max.log.lambda, yend=as.integer (errors)),
showSelected=c("problem.name", "bases.per.problem"),
data=data.frame(modelSelection.errors, what="errors"),
size=5)+
ggtitle("select number of samples with 1 peak")+
ylab("")+
geom_tallrect (aes(
xmin=min.log.lambda,
xmax=max.log.lambda),
clickSelects=c("selector"="peaks"),

showSelected=c("problem.name", "bases.per.problem"),
data=all.modelSelection, alpha=0.5)+
facet_grid(what ~ ., scales="free"),

title="Animint compiler with named clickSelects/showSelected",
first=PSJ$first)
For every problem there is a selector (called problem.name) for

i
###
###
###
)

user
0.024

the number of peaks in that problem. The animint2dir compiler
creates a selection vartable for every unique value of
clickSelects/showSelected names (and it uses corresponding values
to set/update the selected wvalue/geoms).

system elapsed
0.000 0.024

It is clear that it takes much less time to evaluate the R code above which uses the named
clickSelects/showSelected. We compile it below.

print (timing.named.compile <- system.time ({
animint2dir(viz.named, "Chl4-named")

1))

Warning:
Warning:

user
1.752

Using size for a discrete variable is not advised.
Using size for a discrete variable is not advised.

system elapsed
0.055 7.632

The animint produced above can be viewed on Chl4-named/index.html. Note that it
should appear to be the same as the other data viz above. The timings above show that

../Ch14/Ch14-named/index.html

210 Named clickSelects/showSelected

named clickSelects/showSelected are much faster than for loops, in both the definition and
compilation steps.

14.5 Disk usage comparison

In this section we compute the disk usage of both methods.
viz.dirs.vec <- c("Chl4-for", "Chl4-named")
viz.dirs.text <- paste(viz.dirs.vec, collapse=" ")
(cmd <- paste("du -ks", viz.dirs.text))

[1] "du -ks Chl4-for Chl4-named"

kb.dt <- fread(cmd=cmd)
setnames (kb.dt, c("kilobytes", "path"))

kb.dt

kilobytes path
1: 4508 Chil4-for
2: 1768 Chl4-named

The table above shows that the data viz defined using for loops takes about twice as much
disk space as the data viz that used named clickSelects/showSelected.

14.6 Chapter summary and exercises

The table below summarizes the disk usage and timings presented in this chapter. It is clear
that named clickSelects/showSelected are more efficient in both respects, and should be
used instead of for loops.

data.frame(

kilobytes=kb.dt$kilobytes,

construct.seconds=c(
timing.for.construct[["elapsed"]],
timing.named.construct[["elapsed"]]),

compile.seconds=c(
timing.for.compile[["elapsed"]],
timing.named.compile[["elapsed"]]),

row.names=c("for", "named"))

kilobytes construct.seconds compile.seconds
for 4508 3.091 242.610
named 1768 0.024 7.632

Exercises:

Chapter summary and exercises 211

¢ Use named clickSelects/showSelected to create a visualization of some data from your
domain of expertise.

Next, Chapter 15 explains how to visualize root-finding algorithms.

../Ch15/Ch15-Newton.html

15

Newton’s root-finding method

Roots of a function f (x) are values x such that f (x)=0. Some functions £ have an explicit
expression for their roots. For example:

o the linear function f (x)=b*x+c=0 has a single root x=-c/b, if b is not zero.

e the quadratic function f(x)=a*x"2+b*x+c=0 has two roots x=(-bxsqrt(b~2-
4xaxc))/(2#%a), if the discriminant is positive b™2-4*a*c>0.

o the sin function f (x)=sin(a*x)=0 has an infinite number of roots: pi*z/a for all integers
zZ.

However, there are some functions which have no explicit expression for their roots. For
example, the roots of the Poisson loss f (x)=a*x+b*log(x)+c have no explicit expression
in terms of common mathematical functions. (actually it has a solution in terms of the
Lambert W function but that function is not commonly available) This goal of this chapter
is to create an interactive data visualization that explains Newton’s method for finding the
roots of such functions.

Chapter outline:

¢ We begin by implementing the Newton method for the Poisson loss, to find the root
which is larger than the minimum. We create several static and one interactive data
visualization.

e We then suggest an exercise for finding the root which is smaller than the minimum.

15.1 Larger root in mean space

We begin by defining coefficients of a Poisson Loss function with two roots.

Linear <- 95
Log <- -1097
Constant <- 1000
loss.fun <- function(Mean){
Linear*Mean + Log*log(Mean) + Constant
}

(mean.at.optimum <- -Log/Linear)
[1] 11.54737

(loss.at.optimum <- loss.fun(mean.at.optimum))

213

https://www.wolframalpha.com/input/?i=a*x+%2Bb*log%28x%29%2B+c%3D0
https://en.wikipedia.org/wiki/Newton%27s_method

214 Newton’s root-finding method
[1] -586.764

library(data.table)
loss.dt <- data.table(mean=seq(0, 100, 1=400))
loss.dt[, loss := loss.fun(mean)]
opt.dt <- data.table(
mean=mean.at.optimum,
loss=loss.at.optimum,
point="minimum"
library(animint?2)
gg.loss <- ggplot()+
geom_point (aes(mean, loss, color=point), data=opt.dt)+
geom_line(aes(mean, loss), data=loss.dt)
print(gg.loss)

4000-
" point
1]
o minimum
2000-
0_

0 25 50 75 100
mean

Our goal is to find the two roots of this function. Newton’s root finding method starts from
an arbitrary candidate root, and then repeatedly uses linear approximations to find more
accurate candidate roots. To compute the linear approximation, we need the derivative:

loss.deriv <- function(Mean){
Linear + Log/Mean

}

We begin the root finding at a point larger than the minimum,

possible.root <- mean.at.optimum+1
gg.loss+
geom_point (aes(

Larger root in mean space 215

mean, loss, color=point),
data=data.table(
point="start",
mean=possible.root,
loss=loss.fun(possible.root)))

4000~
point
[9] .
[%] minimum
o
2000 - ® start
0_

0 25 50 75 100
mean

We then use the following implementation of Newton’s method to find a root,

iteration <- 1
solution.list <- list()
thresh.dt <- data.table(thresh=1e-6)
while (thresh.dt$thresh < abs({
fun.value <- loss.fun(possible.root)
A
cat(sprintf ("mean=%e loss=Je\n", possible.root, fun.value))
deriv.value <- loss.deriv(possible.root)
new.root <- possible.root - fun.value/deriv.value
solution.list[[iteration]] <- data.table(
iteration, possible.root, fun.value, deriv.value, new.root)
iteration <- iteration+1
possible.root <- new.root

mean=1.254737e+01 loss=-5.828735e+02
mean=8.953188e+01 loss=4.574958e+03
mean=3.424363e+01 loss=3.768946e+02
mean=2.825783e+01 loss=1.901051e+01
mean=2.791944e+01 loss=7.929111e-02

216 Newton’s root-finding method

mean=2.791802e+01 loss=1.425562e-06

root.dt <- data.table(point="root", possible.root, fun.value)
gg.loss+
geom_point (aes(possible.root, fun.value, color=point),
data=root.dt)

4000~
point
[} .
n @ minimum
8
2000~ i 1ot
0_

0 25 50 75 100
mean

The plot above shows the root that was found. The stopping criterion was an absolute cost
value less than 1e-6 so we know that this root is at least that accurate. The following plot
shows the accuracy of the root as a function of the number of iterations.

solution <- do.call(rbind, solution.list)
solution$new.value <- c(solution$fun.valuel[-1], fun.value)
gg.it <- ggplot)+
geom_point (aes(
iteration, fun.value, color=fun),
data=data.table(solution, y="fun.value", fun="function"))+
geom_point (aes(
iteration, loglO(abs(fun.value)), color=fun),
data=data.table(
solution, y="loglO(abs(fun.value))", fun="function"))+
scale_color_manual (values=c("function"="black", approximation="red"))+
geom_point (aes(
iteration, new.value, color=fun),
data=data.table(solution, y="fun.value", fun="approximation"))+
geom_point (aes(
iteration, loglO(abs(new.value)), color=fun),
data=data.table(

Larger root in mean space 217

solution, y="loglO(abs(fun.value))", fun="approximation"))+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(y ~ ., scales="free")+
ylab("")
print(gg.it)

L] L]
4000 -
3000 - -
c
>
2000+ S
=
5}
1000 -
L] L]
0- ° ° ° ° fun
L] . .
@ approximation
L] L]
L4 ° . e function
° ° o
01 2
° ° =3
@
o
0
-5- g
° [=
5
3
-10- =
L]
2 4 6
iteration

The plot above shows a horizontal line for the stopping criterion threshold, on the log scale.
It is clear that the red dot in the last iteration is much below that threshold.

The plot below shows each step of the algorithm. The left panels show the linear approxima-
tion at the candidate root, along with the root of the linear approximation. The right panels
show the root of the linear approximation, along with the corresponding function value (the
new candidate root).

y - fun.value = deriv.value * (z - possible.root)
y = deriv.value*z + fun.value-possible.root*deriv.value
ggplot O+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(iteration ~ step)+
scale_color_manual(values=c("function"="black", approximation="red"))+
geom_abline (aes(
slope=deriv.value, intercept=fun.value-possible.root*deriv.value,
color=fun),
data=data.table(solution, fun="approximation", step=1))+
geom_point (aes(

218 Newton’s root-finding method

new.root, 0, color=fun),

data=data.table(solution, fun="approximation"))+
geom_point (aes(

new.root, new.value, color=fun),

data=data.table(solution, fun="function", step=2))+
geom_vline (aes(

xintercept=new.root, color=fun),

data=data.table(solution, fun="approximation", step=2))+
geom_point (aes(

possible.root, fun.value, color=fun),

data=data.table(solution, fun="function", step=1))+
geom_line (aes(

mean, loss, color=fun),

data=data.table(loss.dt, fun="function"))+
ylab("")

4000
2000+

TN

4000
2000+

|
\

4000~

2000+ fun

7+4 approximation

function

4000
2000+

O_
4000~
2000+

O_
4000
2000+

W

A

25 50 75 1000 25 50 75 1
new.root

oA
o

0

It is clear that the algorithm quickly converges to the root. The following is an animated
interactive version of the same data viz.

animint (
time=list(variable="iteration", ms=2000),
iterations=gg.it+
theme_animint (width=300, colspan=1)+
geom_tallrect (aes(
xmin=iteration-0.5,
xmax=iteration+0.5),
clickSelects="iteration",

Larger root in mean space 219

alpha=0.5,
data=solution),

loss=ggplot)+

theme_bw()+
scale_color_manual (values=c(
"function"="black",
approximation="red"))+
geom_abline (aes(
slope=deriv.value, intercept=fun.value-possible.root*deriv.value,
color=fun),
showSelected="iteration",
data=data.table(solution, fun="approximation"))+
geom_point (aes(
new.root, 0, color=fun),
showSelected="iteration",
size=4,
data=data.table(solution, fun="approximation"))+
geom_point (aes(
new.root, new.value, color=fun),
showSelected="iteration",
data=data.table(solution, fun="function"))+
geom_vline (aes(
xintercept=new.root, color=fun),
showSelected="iteration",
data=data.table(solution, fun="approximation"))+
geom_point (aes(
possible.root, fun.value, color=fun),
showSelected="iteration",
data=data.table(solution, fun="function"))+
geom_line (aes(
mean, loss, color=fun),
data=data.table(loss.dt, fun="function"))+

yl ab (nn))
4000~
3000+ E
2000~ f@ 2000~
1000+ P
.
0-
.
H . g fun 2000 - fun
0- B * approximation ~—*= approximation
b b @ * function == function
5 .-
=
104 g ’ 7
i T

2 4 6 0 25 50 75 100

iteration new.root

220 Newton’s root-finding method

15.2 Comparison with Lambert W solution

The code below uses the Lambert W function to compute a root, and compares its solution
to the one we computed using Newton’s method.

inside <- Linear*exp(-Constant/Log)/Log
root.vec <- Log/Linear*c(

LambertW: :W(inside, 0),

LambertW: :W(inside, -1))

Registered S3 methods overwritten by 'ggplot2':

method from

drawDetails.zeroGrob animint2
grobHeight.absoluteGrob animint2
grobHeight .zeroGrob animint2
grobWidth.absoluteGrob animint2
grobWidth.zeroGrob animint2
grobX.absoluteGrob animint2
grobY.absoluteGrob animint2

heightDetails.titleGrob animint2
heightDetails.zeroGrob animint2
makeContext.dotstackGrob animint2

print.ggplot2_bins animint2
print.rel animint2
widthDetails.titleGrob animint?2
widthDetails.zeroGrob animint?2

loss.fun(c(
Newton=root.dt$possible.root,
Lambert=root.vec[2]))

Newton Lambert
-4.547474e-13 0.000000e+00

For these data, the Lambert W function yields a root which is slightly more accurate than
our implementation of Newton’s method.

15.3 Root-finding in the log space

The previous section showed an algorithm for finding the root which is larger than the
minimum. In this section we explore an algorithm for finding the other root (smaller than
the minimum). Note that the Poisson loss is highly non-linear as mean goes to zero, so
the linear approximation in the Newton root finding will not work very well. Instead, we
equivalently perform root finding in the log space:

Chapter summary and exercises 221

log.loss.fun <- function(log.mean){
Linear*exp(log.mean) + Log+*log.mean + Constant
}
log.loss.dt <- data.table(
log.mean=seq(-1, 3, 1=400)
) [
, loss := log.loss.fun(log.mean)]
ggplot O+
geom_line(aes(
log.mean, loss),
data=log.loss.dt)+
geom_point (aes(
log(mean), loss, color=point),
data=opt.dt)

2000-
1000-
" point
1]
o minimum
0 .,

-1 0 1 2 3
log.mean

Exercise: derive and implement the Newton method for this function, in order to find the
root that is smaller than the minimum. Create an animint similar to the previous section.

15.4 Chapter summary and exercises

In this chapter we explored several visualizations of the Newton method for finding roots of
smooth functions.

Exercises:

e Add a title to each plot.

222 Newton’s root-finding method

o Add a size legend to the first plot (black points larger than red), so that we can see when
red and black have the same value.

e Add a geom_hline to emphasize the loss=0 value in the second plot.

e Add a geom_hline to emphasize the stopping threshold in the first plot.

o Turn off one of the two legends, to save space.

o How to specify smooth transitions between iterations?

o Instead of using iteration as the animation/time variable, create a new one in order to
show two distinct states/steps for each iteration, i.e. the step variable in the facetted
plot above.

o What happens to the rate of convergence when you try to find the larger root in the log
space, or the smaller root in the original space? Theoretically it should not converge as
fast, since the functions are more nonlinear for those roots. Make a data visualization
that allows you to select the starting value, and shows how many iterations it takes to
converge to within the threshold.

e Create another plot that allows you to select the threshold. Plot the number of iterations
as a function of threshold.

o Derive the loss function for Binomial regression, and visualize the corresponding Newton
root finding method.

o Refactor gg. it code to use only one geom_point, instead of the four geoms in the current
code. Hint: use rbind () to create a single table with all of the data.

Next, Chapter 16 explains how to visualize change-point detection models.

https://en.wikipedia.org/wiki/Binomial_regression
../Ch16/Ch16-change-point.html

16

Supervised change-point detection

In this chapter we will explore several data visualizations of supervised changepoint detection
models.

Chapter outline:

o We begin by making several static visualizations of the intreg data set.

o We then create an interactive visualization in which one plot can be click to select the
number of changepoints/segments, and the other plot shows the corresponding model.

o We end by showing a static visualization of the max margin linear regression model, and
suggesting exercises about creating an interactive version.

16.1 Static figures
We begin by loading the intreg data set.

library(animint2)

data(intreg)

library(data.table)

lapply(intreg, function(df)data.table(df) [1:2])

$model

line min.L max.L min.feature max.feature
1: regression -1.4001088 2.139100 -2.476391 -1.584656
2: limit -0.1493744 3.389835 -2.476391 -1.584656
$annotations

signal first.base last.base annotation 1logratio
1: 11.2 55103411 161558770 Obreakpoints 0.9847716

2: 4.2 140080934 201712984 1breakpoint 0.9847716
$intervals
signal feature min.L max.L
1: 4.2 -2.152421 -1.36503599 1.136433
2: 11.2 -1.797948 0.04183316 Inf
$selection
signal min.L max.L segments cost
1: 4.2 -Inf -3.566634 20 2
2: 4.2 -3.566634 -3.301154 19 2

223

224

$segments
signal segments first.base last.base
1: 4.2 1

Supervised change-point detection

mean

1472476 242801018 -0.02092153

2: 4.2 2 1472476 45164626 0.35123108
$breaks
signal base segments
1: 4.2 45164626 2
2: 4.2 114042112 3
$signals
signal base logratio
1: 4.2 1472476 0.4404207
2: 4.2 2063049 0.4594316

As shown above, it is a named list of 7 related data.frames. We begin our exploration of

these data by plotting the signals in separate facets.

data.color <- '"grey50"
gg.signals <- ggplot()+
theme_bw()+
facet_grid(signal ~
geom_point (aes(
base/1e6, logratio,
showSelected="signal"),
color=data.color,
data=intreg$signals)

., scales="free")+

gg.signals
0.5+ 0
0.0 ".%ri\'"’”Hi':ﬂkiinl”\er'1u!u#l,.:. Bl o Jo L L O X N
-0.54 a..‘.'.o-o.‘$. N
05 AW W Ra aNn A,
-0.4 . ° :o ° ° i
_0 < 'y
O.Zg -
0.001 - 20y «Nhoad ".r‘-ﬂa-.v-h.ln e,
-0.25+ ® ® %o R0® © .' &
:8:F7)8: ..j" .H.P;..“.' :\.." w
2 044 Spte o
© 0.2+ [’0‘ ’0 oo “: 3 e’ po* past ot e 0 ‘.-.‘.. &
3 _8.8: °® o® %'p %, oo ‘.‘"."Q-.f H “.- o1
1.0 v .
057 o0 ° .m"o...’«‘o:‘.’vn.w [
007 = ‘en msantesps® o ’ ~
:§Z§E .afgh\eﬁhiiga \unannuﬁ%f-hul-\n,uoﬂdh.iﬁrzb o
T -
_0 24 \... é.‘ d .: o .l.. ® o °
03] el FRSAdiee 5
_0.6' .-

0 50 100

base/le+06

150 200 250

Static figures 225

Each data point plotted above shows an approximate measurement of DNA copy number
(logratio), as a function of base position on a chromosome. Such data come from high-
throughput assays which are important for diagnosing certain types of cancer such as
neuroblastoma.

An important part of the diagnosis is detecting “breakpoints” or abrupt changes, within a
given chromosome (panel). It is clear from the plot above that there are several breakpoint
in these data. In particular signal 4.2 appears to have three breakpoints, signal 4.3 appears
to have one, etc. In fact these data come from medical doctors at the Institute Curie (Paris,
France) who have visually annotated regions with and without breakpoints. These data are
available as intreg$annotations and are plotted below.

breakpoint.colors <- c("lbreakpoint"="#ff7d7d", "Obreakpoints"='#f6f4bf')
gg.ann <- gg.signals+
scale_fill_manual (values=breakpoint.colors)+
geom_tallrect (aes(
xmin=first.base/1e6, xmax=last.base/le6,
fill=annotation),
color="grey",

alpha=0.5,
data=intreg$annotations)
gg.ann
051 ¢ foh
001 ""(Mvwn SISy | A
0.5+ gt >
0.4+ e
00 w-t- P N B
-0.4+ N}
Q%8
0.004 . oy -ﬁ.o-s.v-.rw,..p?qb.- .
0E3] A WM. . w
e T X _
S 0.4 P‘lo . annotation
8 0.24 *° oo’ B Obreakpoints
S - ’..) ol
g _8:8- ° S ii! 1breakpoint
1.0 N °
0.5 PNGo o P 2 Spep s W [N
0.0] ee®® o g0 n® Shacariaad] ~
0‘.“1"“
0.0 o
051 enpsantd e -
-101 o ° ¢ v =
ik -
-021 o el 5
041 ER* l'.“,& =
_0'6- T T T T T T
0 50 100 150 200 250
base/1e+06

The plot above shows yellow regions where the doctors have determined that there are no
significant breakpoints, and red regions where there is one breakpoint. The goal in analyzing
these data is to learn from the limited labeled data (colored regions) and provide consistent
breakpoint predictions throughout (even in un-labeled regions).

In order to detect these breakpoints we have fit some maximum likelihood segmentation mod-
els, using the efficient algorithm implemented in jointseg: :Fpsn. The segment means are

226 Supervised change-point detection
available in intreg$segments and the predicted breakpoints are available in intreg$breaks

For each signal there is a sequence of models from 1 to 20 segments. First let’s zoom in on
one signal:

sig.name <- "4.2"
show.segs <- 7
sig.labels <- subset(intreg$annotations, signal==sig.name)
gg.one <- ggplot()+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
geom_tallrect (aes(
xmin=first.base/le6, xmax=last.base/l1e6,
fill=annotation),
color="grey",
alpha=0.5,
data=sig.labels)+
geom_point (aes(
base/1le6, logratio),
color=data.color,
data=subset (intreg$signals, signal==sig.name))+
scale_fill_manual (values=breakpoint.colors)

gg.one
0.5 e
. 2 .{0 °y
e o (Y
T 2
®
., .
[] []
.0 : [< ; ‘~)
ﬂ’."uo.o .". ec
A e® 002 ° ¢ %o
0.07 ° ..ﬁ:.. .‘o.. o .0."’:";...\.. ..
9 o o e o238 LECRPCIP A o’ annotation
‘a A pos ..‘ ..
g': N ¢ ° N 1breakpoint
—_—) [] :
‘ []
.on % °® 0.0.
[] []
-0.5- .« % e
. o-.o o? :.
[] [] °
[]
0 50 100 150 200 250
base/l1e+06

We plot some of these models for one of the signals below:

sig.segs <- data.table(

intreg$segments) [signal == sig.name & segments <= show.segs]
sig.breaks <- data.table(

Static figures

intreg$breaks) [signal == sig.name & segments <= show.segs]

model.color <- "green"
gg.models <- gg.one+
facet_grid(segments ~ .)+
geom_segment (aes (
first.base/1e6, mean,
xend=last.base/1e6, yend=mean),
color=model.color,
data=sig.segs)+
geom_vline (aes(
xintercept=base/1e6),
color=model.color,
linetype="dashed",
data=sig.breaks)
gg.models

~0.51 X T

R el .
0.0 ————————4%i%.‘rhaF1nuu;;5:—————ﬂﬁwﬂﬂuvvhnnﬂhir:

-0.5+

oo s .

051 ¢ ° %
0.0+ 5
-0.5- ‘o

0.54 O

logratio

-0.51 1 Iy

0.5+ X X
0.0 S ORIV, . '

-0.5+ 1 o @

0.0 - ?%’%"rﬁerqnu;‘,. ‘}Hflhar!hallﬁuiqi

8:3: !"'w,.

-0.5+ 1 Iy

-0.5+ 1 o

i e a0 Y
0ol e il oo, L | L sy

100 150 200
base/le+06

o-
a1
o

227

annotation
1breakpoint

The plot above shows the maximum likelihood segmentation models in green (from one to
six segments). Below we use the penaltyLearning: :labelError function to compute the

label error, which quantifies which models agree with which labels.

sig.models <- data.table(segments=1:show.segs, signal=sig.name)

sig.errors <- penaltyLearning::labelError(
sig.models, sig.labels, sig.breaks,
change.var="base",
label.vars=c("first.base", "last.base"),
model.vars="segments",
problem.vars="signal")

228 Supervised change-point detection

Registered S3 methods overwritten by 'ggplot2':

method from

drawDetails.zeroGrob animint2
grobHeight.absoluteGrob animint2
grobHeight .zeroGrob animint2
grobWidth.absoluteGrob animint2
grobWidth.zeroGrob animint2
grobX.absoluteGrob animint2
grobY.absoluteGrob animint2

heightDetails.titleGrob animint2
heightDetails.zeroGrob animint2
makeContext.dotstackGrob animint2

print.ggplot2_bins animint2
print.rel animint2
widthDetails.titleGrob animint?2
widthDetails.zeroGrob animint2

The sig.errors$label.errors data.table contains one row for every (model,label) combi-
nation. The status column can be used to show the label error: false negative for too
few changes, false positive for too many changes, or correct for the right number of
changes.

gg.models+
geom_tallrect (aes(
xmin=first.base/1e6, xmax=last.base/le6,
linetype=status),
data=sig.errors$label.errors,
color="black",
size=1,
fill=NA)+
scale_linetype_manual (
"error type",
values=c(
correct=0,
"false negative'"=3,
"false positive"=1))

Static figures 229

0.5 ‘a‘ﬁgo..’. r x .
0.0- ——Wmn.—.—.&m -

~0.51 X
0.5+ ° & : = i
0.0+ = I s : s I
0.5 I PR :
0.5 T S aPEe : ; : .
001 LA T n, . SISV IIRUyy |, errortype
-0.51 | b 7 correct
8 0.51 2 X ' | | . false negative
g 0.0 W' < M = false positive
5-05- . ..

oo
ow
L

('}
". : | W . annotation
W' o ! m“ﬁ ol 1breakpoint

';.:'a

I
O
3

f
Ly
L

0 50 100 150 200 250
base/le+06

boo
Tea
.‘%
?

-e3. -

|- o —

b _o
i.
L

Looking at the label error plot above, it is clear that the model with four segments should
be selected, because it achieves zero label errors. There are a number of criteria that can
be used to select which one of these models is best. One way to do that is by selecting the
model with s segments is S*(A\) = L, + A * s, where L, is the total loss of the model with s
segments, and A is a non-negative penalty. In the plot below we show the model selection
function S*(A) for this data set:

sig.selection <- data.table(
intreg$selection) [signal == sig.name & segments <= show.segs]
gg.selection <- ggplot()+
theme_bw()+
geom_segment (aes (
min.L, segments,
xend=max.L, yend=segments),
data=sig.selection)+
xlab("log(lambda)")
gg.selection

230 Supervised change-point detection

segments
IN

-2 -1 0 1 2
log(lambda)

It is clear from the plot above that the model selection function is decreasing. In the next
section we make an interactive version of these two plots where we can actually click on the
model selection plot in order to select the model.

16.2 Interactive figures for one signal

We will create an interactive figure for one signal by adding a geom_tallrect with
clickSelects=segments to the plot above:

interactive.selection <- gg.selection+
geom_tallrect (aes(

xmin=min.L, xmax=max.L),
clickSelects="segments",
data=sig.selection,
color=NA,
fill="black",
alpha=0.5)

interactive.selection

Interactive figures for one signal 231

segments
N

-2 -1 0 1 2
log(lambda)

We will combine that with the non-facetted version of the data/models plot below, in which
we have added showSelected=segments to the model geoms:

interactive.models <- gg.one+
geom_segment (aes (
first.base/1e6, mean,
xend=last.base/le6, yend=mean),
showSelected="segments",
color=model.color,
data=sig.segs)+
geom_vline (aes(
xintercept=base/1e6),
showSelected="segments",
color=model.color,
linetype="dashed",
data=sig.breaks)+
geom_tallrect (aes(
xmin=first.base/1e6, xmax=last.base/le6,
linetype=status),
showSelected="segments",
data=sig.errors$label.errors,
size=2,
color="black",
fi11=NA)+
scale_linetype_manual(
"error type",
values=c(
correct=0,
"false negative'"=3,

232

"false positive"=1))
interactive.models

Supervised change-point detection

"o, I . C i
0.51 n 1 1 1 i1
F 4 oo e n | | "
RS
e I B
i o 1 1 ni i
. o ﬁ: . (] o 1 1 .
1 1 1 mni
o ° o o o ..I 1 "1 ° ¢ \.~ °
1 et 20 B BT NN i
0.0 2 ,_._ﬁ_?_n_f_.c_| 1 111 '_.'._l.fé.ﬁ_: correct
5 .
i) - L e S e, Jeg% | e a® oJl° e false negative
E | o g 0 H 1 1 i ¢ *% 'o i
5] 1 % | L 1o ! N 4 false positive
2 . : o e g _
:] Loy I&: annotation
| |
| : . PI_'.- fo go ¢! 1breakpoint
! . ® (]
057 | | B ik
o
1 | A
n 1 1 1 nu
1 [] 1 4 LATFY
[} 1 1 1 mni
1 n 1 1 i
1 : . o e
0 50 100 150 200 250
base/le+06

Of course the plot above is not very informative because it is not interactive. Below we
combine the two interactive ggplots in a single linked animint:

animint (
models=interactive.models+
ggtitle("Selected model"),

selection=interactive.selection+
ggtitle("Click to select number of segments"))

logratio

-0.5+

o

100 150 200 25

base/1e+06

{71 false negative

O false positive

annotation
1breakpoint

segments

Click to select number of segments

ER N
log(lambda)

Note that in the data viz above the model with 6 segments is not selectable for any value of
lambda, so there is no way to click on the plot to select that model. However it is possible

Static max margin regression plot 233

to select the model using the segments selection menu (click “Show selection menus” at the
bottom of the data viz).

16.3 Static max margin regression plot

Another part of this data set is intreg$intervals which has one row for every signal. The
columns min.L and max.L indicate the min/max values of the target interval, which is the
largest range of log(penalty) values with minimum label errors. Below we plot this interval
as a function of a feature of the data (log number of data points):

gg.intervals <- ggplot()+
geom_segment (aes (
feature, min.L,
xend=feature, yend=max.L),
size=2,
data=intreg$intervals)+
geom_text (aes(
feature, min.L, label=signal,
color=ifelse(signal==sig.name, "black", "grey50")),
vjust=1,
data=intreg$intervals)+
scale_color_identity()+
ylab("output log(lambda)")+
xlab("input feature x")
gg.intervals

o

112 11

output log(lambda)

1.7

-2'50 -2.25 -2.00 -175
input feature x

234 Supervised change-point detection

The target intervals in the plot above denote the region of log(lambda) space that will
select a model with minimum label errors. There is one interval for each signal; we made
an animint in the previous section for the signal indicated in black text. Machine learning
algorithms can be used to find a penalty function that intersects each of the intervals, and
maximizes the margin (the distance between the regression function and the nearest interval
limit). Data for the linear max margin regression function are in intreg$model which is
shown in the plot below:

gg.mm <- gg.intervals+
geom_segment (aes (
min.feature, min.L,
xend=max.feature, yend=max.L,
linetype=line),
color="red",
size=1,
data=intreg$model) +
scale_linetype_manual(
values=c(
regression="solid",
margin="dotted",
limit="dashed"))

line

= regression

- L- _—] -7 =
i] L-11.2 11.¢ « + margi

| 14 17

"~ 109 4.3

-2.50 —2.25 -2.00 -1.75
input feature x

output log(lambda)
\
\
\
A

The plot above shows the linear max margin regression function f(x) as the solid red line.
It is clear that it intersects each of the black target intervals, and maximizes the margin
(red vertical dotted lines). For more information on the subject of supervised changepoint
detection, please see my useR 2017 tutorial.

Now that you know how to visualize each of the seven parts of the intreg data set, the rest

https://github.com/tdhock/change-tutorial

Chapter summary and exercises 235

of the chapter is devoted to exercises.

16.4 Chapter summary and exercises

Exercises:

Add a geom_text which shows the currently selected signal name at the top of the plot,
in interactive.models in the first animint above.

Make an animint with two plots that shows the data set that corresponds to each interval
on the max margin regression plot. One plot should show an interactive version of the
max margin regression plot where you can click on an interval to select a signal. The
other plot should show the data set for the currently selected signal.

In the animint you created in the previous exercise, add a third plot with the model
selection function for the currently selected signal.

Re-design the previous animint so that instead of using a third plot, add a facet to the
max margin regression regression plot such that the log(lambda) axes are aligned. Add
another facet that shows the number of incorrect labels (intreg$selection$cost) for
each log(lambda) value.

Add geoms for selecting the number of segments. Clicking the model selection plot should
select the number of segments, which should update the displayed model and label
errors on the plot of the data for the currently selected signal. Furthermore add a visual
indication of the selected model to the max margin regression plot. The result should
look something like this.

Make another data viz by starting with the facetted gg.signals plot in the beginning
of this chapter. Add a plot that can be used to select the number of segments for each
signal. For each signal in the facetted plot of the data, show the currently selected model
for that signal (there should be a separate selection variable for each signal — you can
use named clickSelects/showSelected as explained in Chapter 14). The result should look
something like this.

Next, Chapter 17 explains how to visualize the K-means clustering algorithm.

https://rcdata.nau.edu/genomic-ml/animint-gallery/2016-01-28-Max-margin-interval-regression-for-supervised-segmentation-model-selection/index.html
../Ch14/Ch14-PeakSegJoint.html
https://rcdata.nau.edu/genomic-ml/animint-gallery/2016-11-10-Max-margin-supervised-penalty-learning-for-peak-detection-in-ChIP-seq-data/index.html
../Ch17/Ch17-k-means-clustering.html

17

K-means clustering

In this chapter we will explore several data visualizations of K-means clustering, which is an
unsupervised learning algorithm.

Chapter outline:

We begin by visualizing two features of the iris data.

We choose three random data points to use as cluster centers.

We show how all distances between data points and cluster centers can be computed
and visualized.

We end by showing a visualization of how the k-means model parameters change with
each iteration.

17.1 Visualize iris data with labels

We begin with a typical visualization of the iris data, including a color legend to indicate
the Species.

library(animint?2)
color.code <- c(
setosa="#1B9E77",
versicolor="#D95F02",
virginica="#7570B3",
"1"="H#ET7298A",
"2"="#66A61E",
"3"="#E6AB02",
"4"="#A6761D")
ggplot O+
scale_color_manual (values=color.code)+
geom_point (aes(
Petal.Length, Petal.Width, color=Species),
data=iris)+
coord_equal()

237

238 K-means clustering

2.5- e oo
°)
(XXX J e o o []
L N J []
o000 o []
2.0- (XX X ° (]
o0
o0 o oo o o ° S .
[]
g 2 N o pecies
- [] [X X I X X J
-§1-5 ee o ® setosa
. ° (XXX Y X .
= o0 o o o ® versicolor
‘G-J' [] [X]
®10- e o 0o oo ® virginica
[]
0.5-

[
e o000 o
eee o
o eo000e o
° oo
0.0- .)
2 4 6

Petal.Length

We will illustrate the K-means clustering algorithm using these two dimensions,

data.mat <- as.matrix(iris[,c("Petal.Width","Petal.Length")])
head(data.mat)

Petal.Width Petal.Length

[1,] 0.2 1.4
[2,] 0.2 1.4
[3,] 0.2 1.3
[4,] 0.2 1.5
[5,] 0.2 1.4
[6,] 0.4 1.7

str(data.mat)

num [1:150, 1:2] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "Petal.Width" "Petal.Length"

To run K-means, the number of clusters hyper-parameter (K) must be fixed in advance.
Then K random data points are selected as the initial cluster centers,

K <- 3

library(data.table)

data.dt <- data.table(data.mat)
set.seed(3)

centers.dt <- data.dt[sample(1:.N, K)]
(centers.mat <- as.matrix(centers.dt))

Petal.Width Petal.Length

[1,] 0.2 1.4
[2,] 2.1 5.4
[3,] 0.2 1.2

centers.dt[, cluster := factor(1:K)]
centers.dt

Visualize iris data with labels 239

Petal.Width Petal.Length cluster

1: 0.2 1.4 1
2: 2.1 5.4 2
3: 0.2 1.2 3

gg.centers <- ggplot()+
scale_color_manual (values=color.code)+
geom_point (aes(
Petal.Length, Petal.Width),
color="grey50",
data=data.dt)+
geom_point (aes(
Petal.Length, Petal.Width, color=cluster),
data=centers.dt)+
coord_equal ()
gg.centers

2.5- R .o X
[X XX} [] o o []
° °
o000 o °
2.0- (XX X} ° °
00.: ¢ oo o o. °
£ S o cluster
S15- T .o::.ooo . - 1
3 ° XYYyl
T oo o o ° ® 2
< ° X
a 1.0- e o o (X} 3
°
0.5- ° Qo: °
o0 o
e cco00e o
e oo
0.0' [[1
2 4 6

Petal.Length

Above we displayed the two data sets (cluster centers and data) using two instances of
geom_point. Below we compute the distance between each data point and each cluster
center,

pairs.dt <- data.table(expand.grid(
centers.i=1:nrow(centers.mat),
data.i=1:nrow(data.mat)))

These can be visualized via a geom_point,

seg.dt <- pairs.dt[, data.table(
data.i,
data=data.mat[data.i,],
center=centers.mat[centers.i,])]
gg.centers+
geom_segment (aes (
data.Petal.Length, data.Petal.Width,
xend=center.Petal.Length, yend=center.Petal.Width),

240 K-means clustering

size=1,
data=seg.dt)

2.5-

2.0-
S cluster
215- o 1
=
! 2
& 1.0- 3

0.5-

0.0-

2 4 6
Petal.Length

There are 450 segments overplotted above, so interactivity would be useful to emphasize
the segments connected to a particular data point. To do that we create a data.i selection
variable,

animint (
ggplot O+
theme_bw()+
theme_animint (height=300, width=640)+
scale_color_manual(values=color.code)+
scale_x_continuous(breaks=seq(1,7,by=0.5))+
scale_y_continuous(breaks=seq(0, 2.5, by=0.5))+
geom_point (aes(
Petal.Length, Petal.Width, color=cluster),
size=4,
data=centers.dt)+
geom_segment (aes (
data.Petal.Length, data.Petal.Width,
xend=center.Petal.Length, yend=center.Petal.Width),
size=1,
showSelected="data.i",
data=seg.dt)+
geom_point (aes(
Petal.Length, Petal.Width),
clickSelects="data.i",
size=2,
color="grey50",
data=data.table(data.mat, data.i=1:nrow(data.mat))))

Visualizing iterations of algorithm 241

254
2.0-

1.5-
cluster

Petal . Width

1.0-

0.5-

0'0_ I I I I I I I I I I I I T
10 15 20 25 30 35 40 45 50 55 60 65 7.0
Petal.Length

In the data viz above you can click on a data point to show the distances from that data
point to each cluster center.

Exercises for this section:

« edit the x/y scales so that the same ticks are shown.

o change the color of each segment so that it matches the corresponding cluster.

e add a tooltip that shows the distance value.

« make the segment width depend on its optimality (segment connected to closest cluster
center should be emphasized with greater width).

17.2 Visualizing iterations of algorithm

Next we compute the closest cluster center for each data point,
pairs.dt[, error := rowSums(
(data.mat[data.i,]-centers.mat[centers.i,]) "2)]

(closest.dt <- pairs.dt[, .SD[which.min(error)], by=data.i])

data.i centers.i error

1: 1 1 0.00
2: 2 1 0.00
149: 149 2 0.04
150: 150 2 0.18

(closest.data <- closest.dt[, .(
data.dt[data.i],
cluster=factor(centers.i)

)ED)

Petal.Width Petal.Length cluster
1: 0.2 1.4 1
2: 0.2 1.4 1

242
149: 2.3 5.4 2
150: 1.8 5.1 2

(both.dt <- rbind(
data.table(type="centers", centers.dt),
data.table(type="data", closest.data)))

type Petal.Width Petal.Length cluster

K-means clustering

1: centers 0.2 1.4 1
2: centers 2.1 5.4 2
152: data 2.3 5.4 2
153: data 1.8 5.1 2
ggplot O+
scale_fill manual (values=color.code)+
scale_color_manual (values=c(centers="black", data="grey"))+
scale_size_manual (values=c(centers=5, data=3))+
geom_point (aes(
Petal.Length, Petal.Width, fill=cluster, size=type, color=type),
shape=21,
data=both.dt)+
coord_equal ()+
theme_bw ()
2.51 . ® oo
Seee o 0 o °® I
cluster
2.0 o000 il o 'o
oo o o o1
L L J e 00 0
e L 3 [) e 2
e e o o
2 1.51 o _eose eee . ol
E e _eecesee
T pA geee o
5 1.0- oo o oo type
O centers
0.5 data
0.0 T T i
2 4 6

Petal.Length

Then we update the cluster centers,

new.centers <- closest.dt[, data.table(
t(colMeans(data.dt[data.i]))

), by=.(cluster=centers.i)]

(new.both <- rbind(
data.table(type="centers", new.centers),
data.table(type="data", closest.data)))

type cluster Petal.Width Petal.Length
1: centers 1 0.300 1.595918

Visualizing iterations of algorithm 243

2: centers 3 0.175 1.125000
152: data 2 2.300 5.400000
153: data 2 1.800 5.100000

ggplot O+

scale_fill manual (values=color.code)+
scale_color_manual (values=c(centers="black", data="grey"))+
scale_size_manual (values=c(centers=5, data=3))+
geom_point (aes(
Petal.Length, Petal.Width, fill=cluster, size=type, color=type),
shape=21,
data=new.both)+
coord_equal)+

theme_bw ()
2.54 ~ o o0
eeee o0 0 O o
0000 © .. cluster
2.0+ o::o. . e o o1
- . oaéo e 00 o
= o) o o) °3
S 157 o * o"88e""* o ° 2
E e eosesee
s o oo’ *°
8 1.0- oo o oo type
O centers
0.54 data
0.0 T T T
4 6

Petal.Length

So the visualizations above show the steps of k-means: (1) updating cluster assignment
based on closest center, then (2) updating center based on data assigned to that cluster. To
visualize several iterations of the above two steps, we can use a for loop,

set.seed(3)
centers.dt <- data.dt[sample(1l:.N, K)]

(centers.mat <- as.matrix(centers.dt))

Petal.Width Petal.Length

[1,] 0.2 1.4
[2,] 2.1 5.4
[3,] 0.2 1.2

data.and.centers.list <- list()
iteration.error.list <- list()
for(iteration in 1:20){
pairs.dt[, error := {
rowSums ((data.mat [data.i,]-centers.mat [centers.i,]) 2)

H
closest.dt <- pairs.dt[, .SD[which.min(error)], by=data.i]

244 K-means clustering

iteration.error.list[[iteration]] <- data.table(
iteration, error=sum(closest.dt[["error"]]))

iteration.both <- rbind(
data.table(type="centers", centers.dt, cluster=1:K),
closest.dt[, data.table(

type="data", data.dt[data.i], cluster=factor(centers.i))])

data.and.centers.list[[iteration]] <- data.table(
iteration, iteration.both)

new.centers <- closest.dt[, data.table(
t(colMeans(data.dt[data.i]))

), keyby=. (cluster=centers.i)]

centers.dt <- new.centers[, names(centers.dt), with=FALSE]

centers.mat <- as.matrix(centers.dt)

}

(data.and.centers <- do.call(rbind, data.and.centers.list))

iteration type Petal.Width Petal.Length cluster

1: 1 centers 0.2 1.4 1

: 1 centers 2.1 5.4 2
3059: 20 data 2.3 5.4 2
3060: 20 data 1.8 5.1 2

(iteration.error <- do.call(rbind, iteration.error.list))

iteration error

1: 1 123.63000

2: 2 85.82705

19: 19 31.37136
20: 20 31.37136

First we create an overview plot with an error curve that will be used to select the model
size,

gg.err <- ggplot()+
theme_bw()+
geom_point (aes(
iteration, error),
data=iteration.error)+
make_tallrect(iteration.error, "iteration", alpha=0.3)

We also make a plot which will show the current iteration,

gg.iteration <- ggplot()+
scale_fill manual (values=color.code)+
scale_color_manual (values=c(centers="black", data=NA))+
scale_size_manual (values=c(centers=5, data=2))+
geom_point (aes (

Chapter summary and exercises

245

Petal.Length, Petal.Width, fill=cluster, size=type, color=type),

shape=21,
showSelected="iteration",
data=data.and.centers)+
coord_equal)+
theme_bw ()
gg.iteration

2.51

< s, @7
=154 e eoo oo
= ° o o000 °
[
E 1.01 .. L] ’o. (1]
] @
0.5 -ﬂo
«
o0 5 i é

Petal.Length

Combining the two plots results in an interactive data viz,

animint (gg.err, gg.iteration)

1254]
1004 -
. = 2.0-
5 "1l 2 15-
5 T5- = 10-
. £ .
05- L.t
0.0- -
50+ :
e s e e
0 5 10 15 20

iteration

Petal.Length

cluster
e 1
° 2
o3

type
QO centers

data

type
O centers

data

17.3 Chapter summary and exercises

Exercises:

o Make centers always show up in front (on top) of the data.

e Add smooth transitions.

246 K-means clustering

¢ Add animation on iteration variable.

e Current code has fixed max number of iterations, so it is possible for the last few
iterations to make no progress. For example in the viz above, iteration=16 was the last
one that resulted in a decrease in error (iterations 17-20 resulted in no decrease). Modify
the code so that it stops iterating if there is no decrease in error.

e Current viz has only one animation frame (showSelected subset) per iteration (the mean
shown is before it is updated). Add another animation frame that shows the mean after
the update.

e Add interactive segments that show the distance from each data point to each cluster
center (as in first animint on this page).

e Add the features described in the exercises in the previous section on this page.

o Compute results for several different random seeds, then display error rates for each seed
on the error overview plot, and allow the user to select any of those results.

o Compute results for several different numbers of clusters (K). Compute the Adjusted Rand
Index using pdfCluster::adj.rand.index(species, cluster) for each different K
and seed. Add an overview plot that shows the ARI value of each model, and allows
selecting the number of clusters.

e Make a similar visualization using another data set such as data("penguins",
package="palmerpenguins").

Next, Chapter 18 explains how to visualize the gradient descent learning algorithm for neural
network learning.

../Ch18/Ch18-neural-networks.html

18

Neural networks

In this chapter we will explore several data visualizations of the gradient descent learning

algorithm for Neural networks.

Chapter outline:

e We begin by simulating and visualizing some 2d data for binary classification.

e We then show how a classification function in 2d can be visualized by computing

predictions on a grid, and then using geom_tile or geom_path with contour lines.

e We compute linear model predictions, and gradient descent updates, using a simple

automatic differentiation (auto-grad) system.

e We end by implementing gradient descent for a neural network, and using an interactive
data visualization to show how the predictions get more accurate with iterations of the
learning algorithm.

18.1 Visualize simulated data

In this section, we simulate a simple data set with a non-linear pattern for binary classification.

sim.col <- 2
sim.row <- 100

set.seed(1)

features.hidden <- matrix(runif(sim.row*sim.col), sim.row, sim.col)

head (features.hidden)

(1,]
(2,1]
(3,]
[4,]
(5,1]
(6,1

O O O O O O

[,1]

.2655087
.3721239
.5728534
.9082078
.2016819
.8983897

[,2]

.6547239
.3631973
.2702601
.9926841
.6334933
.2132081

In the simulation, the data table above has the “hidden” features which are used to create
the labels, but are not available for learning. The latent/true function used for classification
is the following,

bayes <- function(DT)DT[, (V1>0.2 & V2<0.8)]

library(data.table)

247

248 Neural networks

hidden.dt <- data.table(features.hidden)
label.vec <- ifelse(bayes(hidden.dt), 1, -1)
table(label.vec)

label.vec
-1 1
31 69

The binary labels above are created from the hidden features, but for learning we only have
access to the noisy features below,

set.seed(1)
features.noisy <- features.hidden+rnorm(sim.row*sim.col, sd=0.05)
head(features.noisy)

[,1] [,2]
[1,] 0.2341860 0.6237056
[2,] 0.3813061 0.3553031
[3,] 0.5310719 0.2247141
[4,] 0.9879718 1.0005855
[5,1 0.2181573 0.6007640
[6,] 0.8573663 0.3015725

To plot the data and visualize the pattern, we use the code below,

library(animint?2)
label.fac <- factor(label.vec)
sim.dt <- data.table(features.noisy, label.fac)
ggplot)+
geom_point (aes(
V1, V2, color=label.fac),
data=sim.dt)+
coord_equal ()

Visualize simulated data 249

1.00-
° ¢ ®
0.75- e o o °
(] 1 : o . a
° L °
¢ o o ° L4
o o O label.fac
°
N 0.50- ° . o o 1
> 0. °. .
o 1
. o‘. ° I
‘. ° °
o © ° °
°
0.25 . . o ® : .
° ° .‘ .
°
°
[) ° L4 o .‘
0.00- °
0.00 0.25 0.50 0.75 1.00
V1

The plot above shows each row in the data set as a point, with the two features on the two
axes, and the two labels in two different colors. The lower right part of the feature space
tends to have positive labels, and the left and top areas have negative labels. This is the
pattern that the neural network will learn. To properly train a neural network, we need to
split the data into two sets:

e subtrain: used to compute gradients, which are used to update weight parameters,
and predicted values. With enough iterations/epochs of the gradient descent learning
algorithm, and a powerful enough neural network model (large enough number of hidden
units/layers), it should be possible to get perfect prediction on the subtrain set.

o validation: used to avoid overfitting. By computing the prediction error on the validation
set, and choosing the number of gradient descent iterations/epochs which minimizes the
validation error, we can ensure the learned model has good generalization properties
(provides good predictions on not only the subtrain set, but also new data points like in
the validation set).

is.set.list <- list(

validation=rep(c(TRUE,FALSE), l=nrow(features.noisy)))
is.set.list$subtrain <- !is.set.list$validation
set.vec <- ifelse(is.set.list$validation, "validation", "subtrain")
table(set.vec)

set.vec

250 Neural networks

subtrain validation
50 50

The code above is used to randomly assign half of the data into each of the subtrain and
validation sets. Below, we plot the two sets in separate facets,

sim.dt[, set := set.vecl]
ggplot O+
facet_grid(. ~ set, labeller=label_both)+
geom_point (aes (
V1, V2, color=label.fac),
data=sim.dt)+
coord_equal()

set: subtrain set: validation
1.00-
[B []
0.75- ° °® ° o
[] ¢ ° ¢ [} C
° ° °
o © ® . ° ° label.fac
N [] o0 ' []
S 0.50- o — — -1
° .S ° L4 o 1
[] [] C []
° Y L] °
o []
0.25 T o o s e . s
‘ []
[]
) ° ° ° °%
0.00- °
000 025 050 075 100 000 025 050 075 1.00
Vi

18.2 Visualize Bayes optimal classification function

To visualize the optimal/Bayes decision boundary, we need to evaluate the function on a 2d
grid of points that spans the feature space. To create such a grid, we first create a list which
contains the two 1d grids for each feature,

(grid.list <- lapply(sim.dt[, .(V1, V2)], function(V){
seq(min(V), max(V), 1=30)
19))

$v1
[1] 0.005600558 0.041238397 0.076876237 0.112514077 0.148151916 0.183789756
[7] 0.219427595 0.255065435 0.290703274 0.326341114 0.361978954 0.397616793
[13] 0.433254633 0.468892472 0.504530312 0.540168151 0.575805991 0.611443831
[19] 0.647081670 0.682719510 0.718357349 0.753995189 0.789633028 0.825270868
[25] 0.860908708 0.896546547 0.932184387 0.967822226 1.003460066 1.039097905

Visualize Bayes optimal classification function 251

$v2
[1] -0.006562821 0.028166431 0.062895684 0.097624936 0.132354189
[6] 0.167083441 0.201812694 0.236541946 0.271271199 0.306000451
[11] 0.340729703 0.375458956 0.410188208 0.444917461 0.479646713
[16] 0.514375966 0.549105218 0.583834471 0.618563723 0.653292975
[21] 0.688022228 0.722751480 0.757480733 0.792209985 0.826939238
[26] 0.861668490 0.896397742 0.931126995 0.965856247 1.000585500

Then we use CJ (cross-join) to create a data table representing the 2d grid, for which we
evaluate the best/Bayes classification function,

(grid.dt <- do.call(
CJ, grid.list

) [

, bayes.num := ifelse(bayes(.SD), 1, -1)

1L

, bayes.fac := factor(bayes.num)

10

Vi V2 bayes.num bayes.fac

1: 0.005600558 -0.006562821 -1 -1

2: 0.005600558 0.028166431 -1 -1
899: 1.039097905 0.965856247 -1 -1
900: 1.039097905 1.000585500 -1 -1

The best classifier is visualized below in the feature space,

ggplot)+
geom_tile(aes(
Vi, V2, fill=bayes.fac),
color=NA,
data=grid.dt)+
geom_point (aes(
V1, V2, fill=label.fac),
color="black",
shape=21,
data=sim.dt)+
coord_equal ()

252 Neural networks

1.00-

0.75-

bayes.fac

S 0.50- ._1

-

0.25-

0.00-

0.00 0.25 0.50 0.75 1.00
Vi

The plot above shows that even using the best possible function, there are still some
prediction errors (points on a background of different color). Another way to visualize that
best classification function is via the decision boundary, which can be computed using the
code below,

get_boundary <- function(score){
contour.list <- contourLines(
grid.list$Vi, grid.list$v2,
matrix(
score,
length(grid.list$vi),
length(grid.list$Vv2),
byrow=TRUE) ,
levels=0)
if (length(contour.list)){
data.table(contour.i=seq_along(contour.list)) [, {
with(contour.list[[contour.i]], data.table(level, x, y))
}, by=contour.i]
}
}
(bayes.contour.dt <- get_boundary(grid.dt$bayes.num))

contour.i level X y

Visualize Bayes optimal classification function

0 0.2016087
0 0.2016087

0 1.0034601
0 1.0390979

-0.006562821
0.028166431

0.809574611
0.809574611

253

The best decision boundary is visualized in the feature space below,

ggplot O+
geom_path(aes(

X, y, group=contour.i),
data=bayes.contour.dt)+

geom_point (aes(

Vi, V2, fill=label.fac),

color="black",

shape=21,

data=sim.dt)+
coord_equal()

1.00- o
o o 0© I
o
o > e °
o o [o)
/
o
0.75- o °
(o] do °
[o) o ° - o (o)
0 ® °
(o] ° °
o o °o & label.fac
~050- © o o | ° ° o ° o -1
(o] (o]
o 1
oo ° ... o °
(o] 1 °
e ©)
o
(o]
0.25- — . ®
° ° ° .. e
C [
(o]
(o] C ° (o)
0.00- °
0.00 0.25 0.50 0.75 1.00

254 Neural networks

18.3 Forward and back propagation in linear model

To implement the gradient descent algorithm for learning neural network model parameters,
we will use a simple auto-grad system. Auto-grad is the idea that the neural network model
structure should be defined once, and that structure should be used to derive both the
forward (prediction) and backward (gradient) propagation computations. Below we use a
simple auto-grad system where each node in the computation graph is represented by an R
environment (a mutable data structure, necessary so that the gradients are back-propagated
to all the model parameters). The function below is a constructor for the most basic building
block of the auto-grad system, a node in the computation graph:

new_node <- function(value, gradient=NULL, ...){
node <- new.env()
node$value <- value
node$parent.list <- list(...)
node$backward <- function(){
grad.list <- gradient(node)
for(parent.name in names(grad.list)){
parent.node <- node$parent.list[[parent.name]]
parent.node$grad <- grad.list[[parent.name]]
parent.node$backward()
3
}
node

}

The code in the function above starts by creating a new environment, then populates it with
three objects:

e value is a matrix computed by forward propagation at this node in the computation
graph.

e parent.list is a list of parent nodes, each of which is used to compute value.

o backward is a function which should be called by the user on the final/loss node in
the computation graph. It calls gradient, which should compute the gradient of the
loss with respect to the parent nodes, which are stored in the grad attribute in each
corresponding parent node, before recursively calling backward on each parent node.

The simplest kind of node is an initial node, defined by the code below,

initial_node <- function(mat){
new_node (mat, gradient=function(...)1list())

}

The code above says that an initial node simply stores the input matrix mat as the value,
and has a gradient method that does nothing (because initial nodes in the computation
graph have no parents for which gradients could be computed). The code below defines mm,
a node in the computation graph which represents a matrix multiplication,

Forward and back propagation in linear model 255

mm <- function(feature.node, weight.node)new_node(
cbind (1, feature.node$value) %*), weight.node$value,
features=feature.node,
weights=weight.node,
gradient=function(node)list(
features=node$grad %*J, t(weight.node$value),
weights=t(cbind(1, feature.node$value)) Y*J, node$grad))

The mm definition above assumes that there is a weight node with the same number of rows
as the number of columns (plus one for intercept) in the feature node. The forward/value
and gradient computations use matrix multiplication. For instance, we can use mm as follows
to define a simple linear model,

feature.node <- initial_node(features.noisy[is.set.list$subtrain,])
weight.node <- initial_node(rep(0, ncol(features.noisy)+1))
linear.pred.node <- mm(feature.node, weight.node)
str(linear.pred.node$value)

num [1:50, 11 0000000000 ...

It can be seen in the code above that the mm function returns a node representing predicted
values, one for each row in the feature matrix. To use the gradient features we need a loss
function, which in the case of binary classification is the logistic (cross-entropy) loss,

log_loss <- function(pred.node, label.node)new_node (

mean (log(1+exp(-label.node$value*pred.node$value))),

pred=pred.node,

label=label .node,

gradient=function(...)1list(
pred=-label.node$value/ (

1+exp(label.node$value*pred.node$value)

)/length(label .node$value)))

The code above defines the logistic loss and gradient, assuming the label is either -1 or 1,
and the prediction is a real number (not necessarily between 0 and 1, maybe negative). The
code below creates nodes for the labels and loss,

label.node <- initial node(label.vec[is.set.list$subtrain])
loss.node <- log_loss(linear.pred.node, label.node)
loss.node$value

[1] 0.6931472

Now that we have computed the loss, we can compute the gradient of the loss with respect
to the weights, which is used to perform the updates during learning. Remember that we
should now call backward (on the subtrain loss), which should eventually store the gradient
as weight.node$grad. Below we first verify that it has not yet been computed, then we
compute it:

weight.node$grad

256 Neural networks

NULL

loss.node$backward ()
weight .node$grad

[,1]
[1,] -0.16000000
[2,] -0.10511619
[3,] -0.02447615

Note that since loss.node contains recursive back-references to its parent nodes (including
predictions and weights), the backward call above is able to conveniently compute and store
weight.node$grad, the gradient of the loss with respect to the weight parameters. The
gradient is the direction of steepest ascent, meaning the direction weights could be modified
to maximize the loss. Because we want to minimize the loss, the learning algorithm performs
updates in the negative gradient direction, of steepest descent.

(descent.direction <- -weight.node$grad)

[,1]
[1,1 0.16000000
[2,] 0.10511619
[3,] 0.02447615

In gradient descent for this linear model, we update the weight vector in this direction.
Each update to the weight vector is referred to as an iteration or step. A small step in this
direction is guaranteed to decrease the loss, but too small of a step will not make much
progress toward minimizing the loss. It is unknown how far in this direction is best, so we
typically need to search over a grid of step sizes (aka learning rates). Or we can perform a
line search, which means making the following plot of loss as a function of step size, then
choosing the step size with minimal loss.

(line.search.dt <- data.table(step.size=seq(0, 10, 1=101))[, .(
loss=log_loss (mm(
feature.node,
initial_node(weight.node$value+step.size*descent.direction)
), label.node)$value
), by=step.size])

step.size loss

1: 0.0 0.6931472
2: 0.1 0.6894865
100: 9.9 0.8490474
101: 10.0 0.8543739

line.search.min <- line.search.dt[which.min(loss)]
ggplot O+
geom_line (aes(
step.size, loss),

Neural network learning 257

data=line.search.dt)+
geom_point (aes(
step.size, loss),
data=line.search.min)+
geom_text (aes(
step.size, loss, label=sprintf (
"min loss=%f at step size=}.1f",
loss, step.size)),
data=line.search.min,

size=4,
hjust=0,
vjust=1.5)
0.85-
0.80-
©0.75-
o
0.70-
0.65-
. . min loss=0.638003 at step size=3.0 . .
0.0 25 5.0 7.5 10.0

step.size

The plot above shows that the min loss occurs at a step size of about 3, which means that the
line search would choose that step size for this gradient descent parameter update/iteration,
before re-computing the gradient in the next iteration.

18.4 Neural network learning

Defining a linear model in the previous section was relatively simple, because there is only
one weight matrix parameter (actually, a weight vector, with the same number of elements
as the number of columns/features, plus one for an intercept). In contrast, a neural network
has more than one weight matrix parameter to learn. We initialize these weights as nodes in
the code below,

258 Neural networks

new_weight_node_list <- function(units.per.layer, intercept=TRUE){
weight.node.list <- list()
for(layer.i in seq(l, length(units.per.layer)-1)){
input.units <- units.per.layer[[layer.i]]+intercept
output.units <- units.per.layer[[layer.i+1]]
weight.mat <- matrix(
rnorm(input.units*output.units), input.units, output.units)
weight.node.list[[layer.i]] <- initial_node(weight.mat)
}
weight.node.list
}

(units.per.layer <- c(uncol(features.noisy), 40, 1))
[11 240 1

(weight.node.list <- new_weight_node_list(units.per.layer))

[[1]1]
<environment: 0x562964fdb680>

[[2]1]
<environment: 0x562964fde480>

lapply(weight.node.list, function(node)dim(node$value))

[[111]
[1] 3 40
[[211
[1] 41 1

The output above shows that there is a single layer with 40 hidden units in the neural
network, meaning there are two weight matrices to learn. Each of these weight matrices
is used to predict the units in a given layer, from the units in the previous layer. In order
to learn a prediction function which is a non-linear function of the features, each layer
except for the last must have a non-linear activation function, applied element-wise to the
units after matrix multiplication. For example, a common and efficient non-linear activation
function is the ReLU (Rectified Linear Units), which is implemented below,

relu <- function(before.node)new_node (
ifelse(before.node$value < 0, 0, before.node$value),
before=before.node,
gradient=function(node)list(
before=ifelse(before.node$value < 0, 0, node$grad)))
hidden.before.act <- mm(feature.node, weight.node.list[[1]])
str(hidden.before.act$value)

num [1:50, 1:40] 1.62 3.67 2.34 2.42 1.57 ...

Neural network learning 259

hidden.before.act$value[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 1.617099 -0.31485515 0.8687167 0.5969050 -0.5717334
[2,] 3.665478 -0.08953216 1.1884750 0.7686507 -0.7655569
[3,] 2.335856 -1.53696561 1.1271410 0.4960481 -1.2771119
[4,] 2.418533 -0.61750628 1.0377415 0.6157081 -0.8390015
[5,] 1.571396 1.26836784 0.6830969 0.7897418 0.2105804

hidden.after.act <- relu(hidden.before.act)
hidden.after.act$value[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 1.617099 0.000000 0.8687167 0.5969050 0.0000000
[2,] 3.665478 0.000000 1.1884750 0.7686507 0.0000000
[3,] 2.335856 0.000000 1.1271410 0.4960481 0.0000000
[4,] 2.418533 0.000000 1.0377415 0.6157081 0.0000000
[5,]1 1.571396 1.268368 0.6830969 0.7897418 0.2105804

Note in the output above how the ReLU activation sets negative values to zero, and keeps
positive values the same:

(relu.dt <- data.table(
input=seq(-5, 5, 1=101)
) [, output := relu(initial_node(input))$value] [1)

input output
1: -5.0 0.0
2: -4.9 0.0

100: 4.9 4.9
101: 5.0 5.0
ggplot)+

ggtitle("RelLU activation is non-linear")+
geom_line(aes(

input, output),

data=relu.dt)

260 Neural networks
RelLU activation is non-linear

5.

-5.0 -25 0.0 25 5.0
input

Finally, the last node that we need to implement our neural network is a node for predictions,
computed via the for loop over weight nodes in the function below,

pred_node <- function(set.features){
feature.node <- initial node(set.features)
for(layer.i in seq_along(weight.node.list)){
weight.node <- weight.node.list[[layer.i]]
before.node <- mm(feature.node, weight.node)
feature.node <- if(layer.i < length(weight.node.list)){
relu(before.node)
Yelse{
before.node
}
}
feature.node
}
nn.pred.node <- pred_node(features.noisy[is.set.list$subtrain,])
str(nn.pred.node$value)

num [1:50, 1] 3.85 6.42 2.14 3.54 8.18 ...

The pred_node function is also useful for computing predictions on the grid of features,
which will be useful later for visualizing the learned function,

grid.mat <- grid.dt[, cbind(V1,V2)]
nn.grid.node <- pred_node(grid.mat)
str(nn.grid.node$value)

num [1:900, 1] 1.74 2.09 2.43 2.78 3.12 ...

Neural network learning 261

The code below combines all of the pieces above into a gradient descent learning algorithm.
The hyper-parameters are the constant step size, and the maximum number of iterations.

step.size <- 0.5
max.iterations <- 1000
units.per.layer <- c(ncol(features.noisy), 40, 1)
loss.dt.list <- list()
err.dt.list <- list()
pred.dt.list <- list()
set.seed(10)
weight.node.list <- new_weight_node_list(units.per.layer)
for(iteration in 1:max.iterations){
loss.node.list <- 1list()
for(set in names(is.set.list)){
is.set <- is.set.list[[set]]
set.label.node <- initial node(label.vec[is.set])
set.features <- features.noisyl[is.set,]
set.pred.node <- pred_node(set.features)
set.loss.node <- log_loss(set.pred.node, set.label.node)
loss.node.list[[set]] <- set.loss.node
set.pred.num <- ifelse(set.pred.node$value<0, -1, 1)
is.error <- set.pred.num != set.label.node$value
err.dt.list[[paste(iteration, set)]] <- data.table(
iteration, set,
set.features,
label=set.label.node$value,
pred.num=as.numeric(set.pred.num))
loss.dt.list[[paste(iteration, set)]] <- data.table(
iteration, set,
mean.log.loss=set.loss.node$value,
error.percent=100*mean(is.error))
}
grid.node <- pred_node(grid.mat)
pred.dt.list[[paste(iteration)]] <- data.table(
iteration,
grid.dt,
pred=as.numeric(grid.node$value))
loss.node.list$subtrain$backward () #<-back-prop.
for(layer.i in seq_along(weight.node.list)){
weight.node <- weight.node.list[[layer.i]]
weight .node$value <- #learning/param updates:
weight.node$value-step.size*weight .node$grad
}
}
loss.dt <- rbindlist(loss.dt.list)
err.dt <- rbindlist(err.dt.list)
pred.dt <- rbindlist(pred.dt.list)
loss.tall <- melt(loss.dt, measure=c("mean.log.loss", "error.percent"))
loss.tall[, loglO.iteration := loglO(iteration)]
min.dt <- loss.talll[

262 Neural networks

, .SD[which.min(value)], by=.(set, variable)]
ggplot)+
facet_grid(variable ~ ., scales="free")+
scale_y_continuous("")+
geom_line (aes(
iteration, value, color=set),
data=loss.tall)+
geom_point (aes(
iteration, value, fill=set),
shape=21,
color="black",
data=min.dt)

1.5-
3
(9]
@
2
1.0- <}
=
)
7]
7]
] K-\\\\’\\\5____¥
\ set
— ~0- subtrain
60- -0- validation
w
40- S
el
(0]
5]
0]
=
20-

0 250 500 750 1000
iteration

In the code above we saved loss and predictions for all of the iterations of gradient descent,
but in the code below we visualize only some of them, due to limited space:

some <- function(DT)DT[iteration’in’c(1,5,10,50,100)]
err.dt[, prediction := ifelse(label==pred.num, "correct", "error")]
iteration.contours <- pred.dt[

, get_boundary(pred), by=.(iteration)]

some.loss <- some(loss.dt)

pred.dt[, norm.pred := pred/max(abs(pred)), by=.(iteration)]
some.pred <- some(pred.dt)

some.err <- some(err.dt)

some.contours <- some.pred[

, get_boundary(pred), by=.(iteration)]

ggplot)+

Neural network learning 263

facet_grid(set ~ iteration, labeller="label_both")+
geom_tile(aes(

Vi, V2, fill=norm.pred),

color=NA,

data=some.pred)+
geom_path(aes(

X, y, group=contour.i),

color="grey50",

data=some.contours)+
scale_fill_gradient2()+
geom_point (aes(

V1, V2, color=prediction, fill=label/2),

shape=21,

size=2,

data=some.err)+
scale_color_manual (

values=c(correct="white", error="black"))+
coord_equal)+
scale_y_continuous(breaks=seq(0,1,by=0.5))+
scale_x_continuous(breaks=seq(0,1,by=0.5))

iteration: 1 iteration: 5 iteration: 10 iteration: 50 iteration: 100

» Prediction

@

& correct

2

S O error

B

S norm.pred
1.0

3 I 05

5 0.0

=

) -0.5

o

> -1.0

00 05 . 05 1000 05 1000 05
Vi

From the plot above we can see that as the number of iterations increases, the predictions
get more accurate. Finally, we conclude with an interactive plot where you can click the loss
plot to select an iteration of gradient descent, for which the corresponding decision boundary
is shown on the predictions plot.

n.subtrain <- sum(is.set.list$subtrain)

loss.dt[, n.set := ifelse(

set=="subtrain", n.subtrain, sim.row-n.subtrain
)1[, error.count := n.set*error.percent/100]
it.by <- 10

some <- function(DT)DT[iteration %inj as.integer(
seq(1, max.iterations, by=it.by))]

animint (
title="Neural network vs linear model",
out.dir="neural-networks-sim",

264

Neural networks

loss=ggplot)+
ggtitle("Loss/error curves, click to select model/iteration")+
theme _bw()+
theme_animint (width=600, height=350)+
theme (panel .margin=grid::unit(1, "lines"))+
facet_grid(variable ~ ., scales="free")+
scale_y_continuous("")+
scale_x_continuous (
"Iteration/epoch of learning")+
geom_line (aes(
iteration, value, color=set, group=set),
data=loss.tall)+
geom_point (aes(
iteration, value, fill=set),
shape=21,
color="black",
data=min.dt)+
geom_tallrect(aes(
xmin=iteration-it.by/2,
xmax=iteration+it.by/2),
alpha=0.5,
clickSelects="iteration",
data=some(loss.tall [set=="subtrain"])),
data=ggplot ()+
ggtitle("Learned function at selected model/iteration")+
theme_bw()+
theme_animint (width=600)+
facet_grid(. ~ set, labeller="label_both")+
geom_tile(aes(
V1, V2, fill=norm.pred),
color=NA,
showSelected="iteration",
data=some (pred.dt))+
geom_text (aes(
0.5, 1.1, label=paste0(
"loss=", round(mean.log.loss, 4),
", ", error.count, "/", n.set,
" errors=", error.percent, "%")),
showSelected="iteration",
data=loss.dt)+
geom_path (aes(
X, y, group=contour.i),
showSelected="iteration",
color="grey50",
data=some (iteration.contours))+
geom_point (aes(
Vi, V2, fill=label/2, color=prediction),
showSelected=c("iteration", "set"),
size=4,

Chapter summary and exercises 265

15-
1.0-
05+

data=some (err.dt))+
scale_fill_gradient2(
"Class/Score")+
scale_color_manual (
values=c(correct="white", error="black"))+
scale_x_continuous (
"Input/Feature 1")+
scale_y_continuous(
"Input/Feature 2")+
coord_equal())

Learned function at selected model/iteration

set: subtrain et: validation
Loss/error curves, click to select modeliteration loss=1.852, 32/50 errors=64% loss=1.8417, 32/50 emors=6.4%

0.9 Class/Score

ssopfoyupans

0.6

set

Input/Feature 2

60

40+

20+

o= subtrain

o
d

= validation

0.0+

JuaradTon

L T T T T T T T
250 500 780 1000 000 025 050 075 1.00 000 025 050 075 1.00

Iteration/epoch of learning Input/Feature 1

18.5 Chapter summary and exercises

Exercises:

L]

L]

Add animation over the number of iterations.

Add smooth transitions when changing the selected number of iterations.

Add a for loop over random seeds (or cross-validation folds) in the data splitting step,
and create a visualization that shows how that affects the results.

Add a for loop over random seeds at the weight matrix initialization step, and create a
visualization that shows how that affects the results.

Compute results for another neural network architecture (and/or linear model, by adding
a for loop over different values of units.per.layer). Add another plot or facet which
allows selecting the neural network architecture, and allows easy comparison of the min
validation loss between models (for example, add facet columns to loss plot, and add
horizontal lines to emphasize min loss).

Modify the learning algorithm to use line search rather than constant step size, and then
create a visualization which compares the two approaches in terms of min validation loss.

Next, Chapter 99 explains some R programming idioms that are generally useful for interac-
tive data visualization design.

../Ch99/Ch99-appendix.html

A

Useful R programming idioms

This appendix describes several R programming idioms which are useful for creating animints.

A.1 Space saving facets

To emphasize the plotted data in facetted ggplots, eliminate the space between facets using
the following idiom.

ggplot O+
geom_point (aes(Petal.Width, Sepal.Width), iris)+
theme_bw()+
theme (panel .margin=grid: :unit(0, "lines"))+
facet_grid(. ~ Species)

There are three parts of this idiom:

e panel.margin=0 eliminates space between panels.

e theme_bw activates a black and white theme (black panel borders and white panel
backgrounds). This is necessary in order to see the boundaries between panels, since the
ggplot default theme_grey uses grey panel backgrounds and no panel borders.

o facet_x creates a multi-panel ggplot.

Note that we use the grid unit lines, which equals the height of one line of text at the
default size. This is the only grid unit which animint knows how to translate. It is not
recommended to use other units such as cm.

A.2 List of data tables

The list of data tables idiom is very useful for creating interactive data visualizations of
arbitrary complexity. The general form looks like

library(data.table)

outer.data.list <- list()

inner.data.list <- list()

for (outer in outer.vec){
outer.dt <- computeOuter (outer)

267

268 Useful R programming idioms

outer.data.list[[paste(outer)]] <- data.table(outer, outer.dt)
for(inner in inner.vec){
inner.dt <- computelnner(outer.dt, inner)
inner.data.list[[paste(outer, inner)]] <-
data.table(outer, inner, inner.dt)
}
}
outer.data <- do.call(rbind, outer.data.list)
inner.data <- do.call(rbind, inner.data.list)

Some comments:

e The first part of the idiom involves initializing empty lists. Here there are two,
outer.data.list and inner.data.list. However there can be as many as necessary.

e The second part of the idiom is a bunch of nested for loops that assign data tables to
elements of those lists.

— Functions like computeQuter and computeInner can be used, or you can just do
the computations directly inside the for loop.

— To ensure that your code will run as fast as possible, use matrix-vector or vector-
scalar operations in the innermost for loop. If you only do scalar-scalar operations
in your innermost for loop, then you can definitely improve the performance of
your code by removing that for loop and re-writing the computation in terms of
vector-scalar operations.

— The paste function is used to assign a data.table to a named list element. Although
in principle one could use either data.frame or data.table, in practice data.table
is often much faster during the last combination step.

e The last part of the idiom uses do.call with rbind to combine the data tables stored
during the for loops.

A.3 addColumn then facet

This idiom is useful for creating multi-panel ggplots with aligned axes. First, define a function
which takes as input a data table and one or more values which will be used to add factors
to that data table.

addColumn <- function(df, time.period)data.frame(
df, time.period=factor(time.period, c("1975", "1960-2010")))
animint (
ggplot)+
geom_point (aes(
x=1ife.expectancy, y=fertility.rate, color=region),
data=addColumn (WorldBank1975, "1975"))+
geom_path(aes(
x=life.expectancy, y=fertility.rate, color=region,
group=country) ,
data=addColumn(WorldBankBefore1975, "1975"))+
geom_line (aes(

Manual color legends 269

x=year, y=fertility.rate, color=region, group=country),
data=addColumn(WorldBank, "1960-2010"))+

facet_grid(. ~ time.period, scales="free")+

xlab(""))

Note that scales="free" and xlab("") are used since the x axes now have very different
units (year and life expectancy).

A.4 Manual color legends

Color and fill legends in ggplot2 can be manually specified via scale_color_manual and
scale_fill_manual. Typically we will choose one of the ColorBrewer palettes:

RColorBrewer: :display.brewer.all()

YIOrRd [0 P
YIOrBr [0 P e ——
YIGnBu [Y P
YIGn [0 Y Y
Reds [Y Y
RdPu [Y Y R
Purples [e e
PuRd F0 [D e e ——
PuBuGn [Y P
PuBu [Y P
OrRd 0 Y e e ——
Oranges [Y I S
Greys [
Greens [0 N Y e
GnBu [Y e
BuPu [Y Y
BuGn [Y Y e
Blues [Y P
Set3 I]
Set2
Setl I Y —— [|
Pastel2
Pastell
Paired |]]]]]
Dark2 | S S e s e e
Accent [[[|
Spectral I [Y
RAYIGn I e [|
RAYIBu N [
RAGy I I [Y
RdBu N [Y
PuOr I [N
PRGN I e [S
PiYG I [Y
BrBG I N [N

For example to get the R code for the Setl palette, we can write

dput (RColorBrewer: :brewer.pal(7, "Setl"))

270

Useful R programming idioms

c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FFTFO0", "#FFFF33",

"#A65628")

We can then copy that R code from the terminal and paste it into our text editor

data(WorldBank, package="animint2")

region.colors <- c(
"#E41A1C", "#377EB8",
"#A65628")

names (region.colors) <-

region.colors

East Asia & Pacific
Europe & Central Asia

Latin America & Caribbean

Middle East & North Africa

Sub-Saharan Africa

"#4DAF4A",

"#984EA3",

"#FFTFO0"

levels(WorldBank$region)

(all

(all

(all

(all

(all

income levels)
"#E41A1C"
income levels)
"#377TEB8"
income levels)
"#4DAF4A"
income levels)
"#984EA3"
North America
"#FFTFO0"
South Asia
"#FFFF33"
income levels)
"#A65628"

Then we can use it with scale_color_manual

library(animint?2)
ggplot)+

scale_color_manual (values=region.colors)+

geom_point (aes(

x=life.expectancy, y=fertility.rate, color=region),

data=WorldBank)

"#FFFF33",

Warning: Removed 1490 rows containing missing values (geom_point).

Manual color legends

fertility.rate

40

60
life.expectancy

271

region

(]

[}

East Asia & Pacific (all income levels)

Europe & Central Asia (all income levels)
Latin America & Caribbean (all income levels)
Middle East & North Africa (all income levels)
North America

South Asia

Sub-Saharan Africa (all income levels)

B

Contributing

This manual has been developed in the open, and it wouldn’t be nearly as good without
outside contributions. There are two primary ways you can help make the manual even
better.

B.1 Reporting issues

If you don’t understand something in this manual, please let us know! Your feedback on
what is confusing or hard to understand is valuable.

e For most issues, please report an issue in public to animint developers in this GitHub
repo. The link also appears on the right sidebar of each web page.
o For issues which you would prefer to discuss privately, please write me an email.

B.2 Submitting edits

If you spot a typo, or you know how to fix another issue, then feel free to edit the underlying
page, and send a pull request:

o Click “Edit this page” on the right sidebar.

e Make the changes using github’s in-page editor and save.

e Submit a pull request including a brief description of your changes: “fixing typos” is
perfectly adequate.

o If you make significant changes, include the phrase “I assign the copyright of this
contribution to Toby Dylan Hocking” - T need this so I can publish the printed manual.

273

https://github.com/animint/animint-manual-en/issues/new
mailto:Toby.Hocking@R-Project.org

	Contents and motivation
	Contents
	The animint2 extensions to the grammar of graphics
	Examples
	Appendices

	Motivation
	What is data analysis?
	Small data analysis without visualization
	Medium data analysis with static data visualizations
	Large data analysis with interactive data visualization

	Chapter summary and exercises

	I animint2 basics
	Grammar of graphics
	History and purpose of the grammar of graphics
	Installing and attaching animint2
	Translating plot sketches into ggplots
	Rendering ggplots on web pages using animint
	Multi-layer data visualization (multiple geoms)
	Multi-plot data visualization
	Multi-panel data visualization (facets)
	Different geoms in each panel (aligned axes)
	Same geoms in each panel (compare data subsets)

	Chapter summary and exercises

	The showSelected keyword
	Sketching with showSelected
	Selecting data subsets using menus
	Transitions: the duration option and key aesthetic
	Animation: the time option
	Chapter summary and exercises

	The clickSelects keyword
	Interactive legends implicitly use clickSelects
	Use clickSelects to identify points on a scatterplot
	The first option
	The selector.types option
	Selecting a year on a time series plot
	Selecting a year on a time series facet
	Chapter summary and exercises

	Sharing
	Compile to a local directory
	Publish in R Markdown
	Publish on a web server
	Publish on Netlify Drop
	Publish on GitHub Pages
	Organizing animints in a gallery
	Chapter summary and exercises

	New features
	Observation-specific options (new aesthetics)
	Review of previously introduced aesthetics
	Hyperlinks using aes(href)
	Tooltips using aes(tooltip)
	HTML id attribute using aes(id)
	Data-driven selector names using named clickSelects and showSelected

	New geoms
	Tall and wide rectangles for selection
	Aligned labels for avoiding overlapping text

	Geom options
	The chunk_vars geom-specific compilation option
	Specifying how selection state is displayed
	Specifying guided tour text

	Plot-specific options
	Plot height and width
	HTML table layout
	Size scale in pixels
	Axes and legend text size

	Global data viz options
	Review of previously introduced global options
	Web page title with the title option
	Link R code with source option
	Link a video
	Show or hide selection menus with the selectize option

	Chapter summary and exercises

	Limitations
	Use normalized variables to work with fixed scales
	Compute statistics for each showSeleted subset
	Add values to a multiple selection set one at a time
	Adjust y instead of using vjust with geom_text
	Order the plots on the page
	Avoid line breaks in text labels
	Avoid some ggplot theme options
	Facets with multiple variables per axis
	Interactive definition of aesthetic mappings using shiny
	Interactive computation
	Chapter summary and exercises

	II Advanced examples
	World Bank
	Load data and define helper functions
	First time series plot
	Add a scatterplot facet
	Adding another time series facet
	Chapter summary and exercises

	Montreal bikes
	Static figures
	Interactive viz of accident frequency
	Interactive viz with map and details
	Chapter summary and exercises

	K-Nearest-Neighbors
	Original static figure
	Plot of mis-classification error curves
	Plot of decision boundaries in the input feature space
	Combined plots

	Select the number of neighbors using interactivity
	Clickable error curves plot
	Feature space plot that shows the selected number of neighbors
	Combined interactive data viz

	Select the number of cross-validation folds using interactivity
	Chapter summary and exercises

	Lasso
	Static plots of the coefficient regularization path
	Interactive visualization of the regularization path
	Re-design with moving tallrects
	Chapter summary and exercises

	Support Vector Machines
	Generate and plot some data
	Linear SVM
	Non-linear polynomial kernel SVM
	Chapter summary and exercises

	Poisson regression
	Plot the probability mass function and select the Poisson mean parameter
	Add a panel for the cumulative distribution function
	Add a plot of the Poisson loss and a selector for label value
	Chapter summary and exercises

	Named clickSelects/showSelected
	Download data set
	Compute data to plot
	Define data viz using for loops
	Define data viz using named clickSelects/showSelected
	Disk usage comparison
	Chapter summary and exercises

	Newton's root-finding method
	Larger root in mean space
	Comparison with Lambert W solution
	Root-finding in the log space
	Chapter summary and exercises

	Supervised change-point detection
	Static figures
	Interactive figures for one signal
	Static max margin regression plot
	Chapter summary and exercises

	K-means clustering
	Visualize iris data with labels
	Visualizing iterations of algorithm
	Chapter summary and exercises

	Neural networks
	Visualize simulated data
	Visualize Bayes optimal classification function
	Forward and back propagation in linear model
	Neural network learning
	Chapter summary and exercises

	Appendices
	Useful R programming idioms
	Space saving facets
	List of data tables
	addColumn then facet
	Manual color legends

	Contributing
	Reporting issues
	Submitting edits

